A team semantics for FC indefinites and their grammaticalization

Marco Degano
University of Amsterdam

TbiLLC 2023, Telavi
18 Sep 2023

Plan of the talk

1. Indefinites and FC
2. Grammaticalization
3. Team Semantics
4. Formal Diachronic Analysis
5. Conclusion

Outline

1. Indefinites and FC

2. Grammaticalization
3. Team Semantics

4. Formal Diachronic Analysis

5. Conclusion

Indefinite Pronouns

The English some-series, a canonical example of indefinite pronoun:
(1) John bought something yesterday.

Indefinite Pronouns

The English some－series，a canonical example of indefinite pronoun：
（1）John bought something yesterday．
However，cross－linguistically indefinites display a great variety in form and meaning．For instance，the specific－＠Jß（－ghats）vs the non－specific－$\partial \supset(-m e)$ in Georgian：
 John－ERG yesterday raghats／＊rame buy－PST．3SG ＇John bought something yesterday．＇
 John－DAT yesterday raghats／rame－GEN buy－INF しŋらœ」 want－PST．3SG
＇John wanted to buy something yesterday．＇

Indefinites and Free Choice

(4) a. You can take any book.
b. You can take a book and every book is a possible option.
[Aloni 2007; Chierchia 2013; Dayal 1998; Giannakidou 2001; Jayez and Tovena 2005;

Indefinites and Free Choice

(4) a. You can take any book.
b. You can take a book and every book is a possible option.

They are quite frequent cross-linguistically:

English anyone Spanish cualquier(a) Japanese daredemo

Italian qualunque
Dutch wie dan ook
Hebrew kol
[Aloni 2007; Chierchia 2013; Dayal 1998; Giannakidou 2001; Jayez and Tovena 2005;

Indefinites and Free Choice

(4) a. You can take any book.
b. You can take a book and every book is a possible option.

They are quite frequent cross-linguistically:

English anyone Spanish cualquier(a) Japanese daredemo

Italian qualunque
Dutch wie dan ook
Hebrew kol

They normally cannot occur freely, but they display restricted distributions (e.g., they are licensed by modals):
(5) a. *Anyone fell.
b. Anyone could fall.
[Aloni 2007; Chierchia 2013; Dayal 1998; Giannakidou 2001; Jayez and Tovena 2005;
2. Grammaticalization
3. Team Semantics
4. Formal Diachronic Analysis
5. Conclusion

Grammaticalization Patterns

The grammaticalization of wh-based FC indefinites has been studied in several diachronic works:

A broad cross-linguistic generalization of the grammaticalization process:
(1) Unconditional phase
(2) Appositive phase
(3) Indefinite phase
[Company Company and Loyo 2006; Degano 2022; Degano and Aloni 2021; Halm 2021;

Grammaticalization Patterns

The grammaticalization of $w h$-based FC indefinites has been studied in several diachronic works:

A broad cross-linguistic generalization of the grammaticalization process:
(1) Unconditional phase
(2) Appositive phase
(3) Indefinite phase

To illustrate this trend, we will use the Dutch indefinite wie dan ook as a representative item, while keeping the rest of the simplified examples in English.
[Company Company and Loyo 2006; Degano 2022; Degano and Aloni 2021; Halm 2021;

Unconditional phase

First phase: Unconditional headed by a wh-element. Typically in combination with other elements (e.g., dan ook in the case of wie dan ook) will then be part of the grammaticalized indefinite.
(6) Unconditional

Wie dan ook comes to the talk, I should present well. Whoever comes to the talk, I should present well.

Appositive phase

Intermediate phase: the expression occurs as appositive often marked by two commas. Two typical anchors:
(1) the anchor is a 'referential expression' (e.g., a proper name), as in (7);
(2) the anchor is a non-referential expression (e.g., a plain indefinite), as in (8).
(7) John, wie dan ook, passed the exam. Ignorance: John passed the exam and the speaker does not know who John is.
(8) A student, wie dan ook, can pass the exam. Free Choice: Any student can pass the exam.

Final phase: full-fledged determiner or pronoun:
(9) Wie dan ook can pass the exam. Free Choice: Anyone can pass the exam.

Outline

2. Grammaticalization
3. Team Semantics

4. Formal Diachronic Analysis

5. Conclusion

Team Semantics

In team semantics, formulas are evaluated wrt a set of evaluation points, called team.

T	x	y
i_{1}	d_{1}	d_{1}
i_{2}	d_{1}	d_{1}
i_{3}	d_{2}	d_{1}
i_{4}	d_{2}	d_{1}

A team T : a set of assignments $i: V \rightarrow M$

Team Semantics

In team semantics, formulas are evaluated wrt a set of evaluation points, called team.

T	x	y
i_{1}	d_{1}	d_{1}
i_{2}	d_{1}	d_{1}
i_{3}	d_{2}	d_{1}
i_{4}	d_{2}	d_{1}

A team T : a set of assignments $i: V \rightarrow M$
This allows us to express relationships of functional dependence between variables.

Dependence Atom:

$$
M, T \vDash \operatorname{dep}(\vec{x}, y) \Leftrightarrow \text { for all } i, j \in T: i(\vec{x})=j(\vec{x}) \Rightarrow i(y)=j(y)
$$

Team Semantics

In team semantics, formulas are evaluated wrt a set of evaluation points, called team.

T	x	y
i_{1}	d_{1}	d_{1}
i_{2}	d_{1}	d_{1}
i_{3}	d_{2}	d_{1}
i_{4}	d_{2}	d_{1}

A team T : a set of assignments $i: V \rightarrow M$
This allows us to express relationships of functional dependence between variables.

Dependence Atom:

$$
M, T \vDash \operatorname{dep}(\vec{x}, y) \Leftrightarrow \text { for all } i, j \in T: i(\vec{x})=j(\vec{x}) \Rightarrow i(y)=j(y)
$$

$\operatorname{dep}(x, y) \checkmark \quad \operatorname{dep}(\varnothing, y) \checkmark \quad \operatorname{dep}(y, x) \boldsymbol{X}$

Teams as information states

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is initial iff $\operatorname{Dom}(T)=\{\nu\}$.

v
v_{1}
v_{2}
\cdots
v_{n}

Teams as information states

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is initial iff $\operatorname{Dom}(T)=\{\nu\}$.

v	x
v_{1}	a
v_{2}	a
\ldots	a
v_{n}	a

Discourse information is added by operations of assignment extensions.

Teams as information states

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is initial iff $\operatorname{Dom}(T)=\{\nu\}$.

v	x	w
v_{1}	a	w_{1}
v_{2}	a	w_{2}
\ldots	a	\cdots
v_{n}	a	w_{n}

Discourse information is added by operations of assignment extensions.

Teams as information states

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is initial iff $\operatorname{Dom}(T)=\{\nu\}$.

v	x	w	y
v_{1}	a	w_{1}	b_{1}
v_{2}	a	w_{2}	b_{2}
\ldots	a	\ldots	\ldots
v_{n}	a	w_{n}	b_{n}

Discourse information is added by operations of assignment extensions.

Teams as information states

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is initial iff $\operatorname{Dom}(T)=\{\nu\}$.

v	x	w	y	\ldots
v_{1}	a	w_{1}	b_{1}	\ldots
v_{2}	a	w_{2}	b_{2}	\ldots
\ldots	a	\ldots	\ldots	\cdots
v_{n}	a	w_{n}	b_{n}	\cdots

Discourse information is added by operations of assignment extensions.

Teams as information states

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is initial iff $\operatorname{Dom}(T)=\{\nu\}$.

v	x	w	y	\ldots
v_{1}	a	w_{1}	b_{1}	\ldots
v_{2}	a	w_{2}	b_{2}	\ldots
\ldots	a	\ldots	\ldots	\ldots
v_{n}	a	w_{n}	b_{n}	\ldots

Discourse information is added by operations of assignment extensions.
Felicitous sentence : A sentence is felicitous/grammatical if there is an initial team which supports it.

Aloni \& Degano (2022) - Basics

Indefinites are treated as strict existentials (i.e., extensions of the form $T \rightarrow D$):
(10) Someone called.
$\exists_{\mathbf{s}} \mathbf{x} \phi(x, v)$

v	x
v_{1}	d_{1}
v_{2}	d_{2}

Aloni \& Degano (2022) - Basics

Indefinites are treated as strict existentials (i.e., extensions of the form $T \rightarrow D$):
(10) Someone called.

$$
\exists_{\mathbf{s}} \mathbf{x} \phi(x, v)
$$

v	x
v_{1}	d_{1}
v_{2}	d_{2}

Universal quantifiers are captured via universal extensions:
(11) Everyone called.

v	x
v_{1}	d_{1}
v_{1}	d_{2}
v_{2}	d_{1}
v_{2}	d_{2}

Aloni \& Degano (2022) - Basics

Indefinites are treated as strict existentials (i.e., extensions of the form $T \rightarrow D$):
(10) Someone called.

$$
\exists_{\mathbf{s}} \mathbf{x} \phi(x, v)
$$

v	x
v_{1}	d_{1}
v_{2}	d_{2}

Universal quantifiers are captured via universal extensions:
(11) Everyone called.

v	x
v_{1}	d_{1}
v_{1}	d_{2}
v_{2}	d_{1}
v_{2}	d_{2}

Existential modals are treated as lax existentials (i.e., extensions of the form $T \rightarrow \wp(W) \backslash\{\varnothing\})$
(12) John may walk.
$\exists_{l} \mathbf{w} \phi(j, w)$

v	w
v_{1}	w_{1}
v_{2}	w_{1}
v_{2}	w_{2}

Aloni \& Degano (2022) - Marked Indefinites

In Aloni \& Degano (2022), marked indefinites trigger the obligatory activation of particular atoms, responsible for their enriched meaning and restricted distribution:

TYPE	REQUIREMENT	EXAMPLE
(i) unmarked	none	Italian qualcuno
(ii) specific	$\operatorname{dep}(\nu, x)$	Georgian -ghats
(iii) non-specific	$\operatorname{var}(\nu, x)$	Georgian -me
(iv) epistemic	$\operatorname{var}(\varnothing, x)$	German irgend-
(v) specific known	$\operatorname{dep}(\varnothing, x)$	Russian koe-
(vi) SK + NS	$\operatorname{dep}(\varnothing, x) \operatorname{var}(\nu, x)$	unattested
(vii) specific unknown	$\operatorname{dep}(\nu, x) \wedge \operatorname{var}(\varnothing, x)$	Kannada -oo

Marked (Non)-specific Indefinites

Aloni \& Degano (2022) - Marked Indefinites

In Aloni \& Degano (2022), marked indefinites trigger the obligatory activation of particular atoms, responsible for their enriched meaning and restricted distribution:

TYPE	REQUIREMENT	EXAMPLE
(i) unmarked	none	Italian qualcuno
(ii) specific	$\operatorname{dep}(\nu, x)$	Georgian -ghats
(iii) non-specific	$\operatorname{var}(\nu, x)$	Georgian -me
(iv) epistemic	$\operatorname{var}(\varnothing, x)$	German irgend-
(v) specific known	$\operatorname{dep}(\varnothing, x)$	Russian koe-
(vi) SK + NS	$\operatorname{dep}(\varnothing, x) \operatorname{var}(\nu, x)$	unattested
(vii) specific unknown	$\operatorname{dep}(\nu, x) \wedge \operatorname{var}(\varnothing, x)$	Kannada -oo

Marked (Non)-specific Indefinites

Can we extend the account to free choice indefinites?

Generalized Variation

Generalized Variation Atom

$M, T \vDash V_{A R}(\vec{z}, u) \Leftrightarrow$ for all $i \in T: \mid\{j(u): j \in T$ and $i(\vec{z})=j(\vec{z})\} \mid \geq n$
$M, T \vDash V A R_{|D|}(\nu, x) \Leftrightarrow$ for all $i \in T: \mid\{j(x): j \in T$ and $i(\nu)=j(\nu)\}|=|D|$
(13) You can take anything.

$$
\exists_{l} w \exists_{s} x\left(\phi(x, w) \wedge V A R_{|D|}(\nu, x)\right)
$$

Some facts

FC indefinites are ungrammatical in episodic contexts, since we analyze them as strict existentials with a total variation component:
(14) *John took anything

$$
\exists_{s} x\left(\varphi(x, v) \wedge V A R_{|D|}(\nu, x)\right)
$$

ν	x
ν_{1}	d_{1}
ν_{2}	d_{2}
\ldots	\ldots
v_{n}	d_{n}

Some facts

FC indefinites are ungrammatical in episodic contexts, since we analyze them as strict existentials with a total variation component:
(14) *John took anything $\exists_{s} x\left(\varphi(x, v) \wedge V A R_{|D|}(v, x)\right)$

ν	x
ν_{1}	d_{1}
v_{2}	d_{2}
\ldots	\ldots
v_{n}	d_{n}

FC indefinites cannot be licensed by bona-fide quantifiers:
$V A R_{|D|}(v \vec{y}, x)$
(15) *Everyone took anything

$$
\forall y \exists_{s} x\left(\varphi(x, v) \wedge V A R_{|D|}(v y, x)\right)
$$

Outline

2. Grammaticalization
3. Team Semantics
4. Formal Diachronic Analysis
5. Conclusion

General Plan

Phases	Total Variation
1. Unconditional	Pragmatic inference $V A R_{\|D\|}(\varnothing, x)$
	\downarrow conventionalization
	Conventional nON-AT-ISSUE $V A R_{\|D\|}(\varnothing, x)$
2. Appositive	\downarrow strengthening
	Conventional nON-AT-ISSUE $V A R_{\|D\|}(\nu, x)$
	\downarrow integration
3. Indefinite	Conventional AT-ISSUE $V A R_{\|D\|}(\nu, x)$

Conjecture on grammaticalization processes:
Total variation as an originally pragmatic inference.
Appositive phase as a conventionalization bridge for integrating total variation into the semantic content of the indefinite.

Unconditionals

The antecedent of an unconditional denotes an interrogative clause, analyzed as a set of alternatives/teams.
(16) Unconditional
a. Whoever comes to the talk, I should present well
b. ? $x \phi(x, \nu) \Rightarrow \psi(\nu)$
${ }^{1}$ A similar analysis can be put forward for unconditionals of the form 'whether Mary or John will come to talk, ...', since inquisitive disjunction is definable with dependence atoms:
[Ciardelli 2016, ${ }^{\phi}$ V/ $\psi \equiv \exists x \exists y(\operatorname{dep}(\varnothing, x) \wedge \operatorname{dep}(\varnothing, y) \wedge(x=y \wedge \phi) \vee(x \neq y \wedge \psi))$
[Ciardell 2010, Rawins 2008]

Unconditionals

The antecedent of an unconditional denotes an interrogative clause, analyzed as a set of alternatives/teams.
(16) Unconditional
a. Whoever comes to the talk, I should present well
b. ? $x \phi(x, \nu) \Rightarrow \psi(\nu)$

Proposal: an unconditional requires for all alternatives T^{\prime} of the antecedent, that their intersection with the initial team T supports the consequent. ${ }^{1}$

$$
M, T \vDash \phi \Rightarrow \psi \Leftrightarrow \forall T^{\prime} \in \operatorname{Alt}(\phi): M, T \cap T^{\prime} \vDash \psi
$$

[^0][Ciardelli 2016; Rawlins 2008] | ϕ V/ $\psi \equiv \exists \exists(\operatorname{dep}(\varnothing, x) \wedge \operatorname{dep}(\varnothing, y) \wedge(x=y \wedge \phi) \vee(x \neq y \wedge \psi))$ |
| :---: |

Unconditionals

The antecedent of an unconditional denotes an interrogative clause, analyzed as a set of alternatives/teams.
(16) Unconditional
a. Whoever comes to the talk, I should present well
b. ? $x \phi(x, \nu) \Rightarrow \psi(\nu)$

Proposal: an unconditional requires for all alternatives T^{\prime} of the antecedent, that their intersection with the initial team T supports the consequent. ${ }^{1}$

$$
M, T \vDash \phi \Rightarrow \psi \Leftrightarrow \forall T^{\prime} \in \operatorname{Alt}(\phi): M, T \cap T^{\prime} \vDash \psi
$$

How to define $\operatorname{Alt}(\phi)$?

[^1]

Questions and Team Semantics

A team-based system gives naturally rise to a treatment of questions by taking teams as set of alternatives.

The framework is expressive enough to take different theoretical choices (partition semantics, inquisitive semantics, ...).

Partion

Inq Sem (mention-some)

Questions and Team Semantics

A team-based system gives naturally rise to a treatment of questions by taking teams as set of alternatives.

The framework is expressive enough to take different theoretical choices (partition semantics, inquisitive semantics, ...).

Partion

Inq Sem (mention-some)

Preliminary observation: Wh-questions are typically associated with existential presuppositions: 'Who danced?' presupposes that 'Someone danced'.

Illustration

Whoever comes to the talk, I should present well.

$$
M, T \models ? x \phi(x, v) \Rightarrow \psi(\nu) \Leftrightarrow \forall T^{\prime} \in A l t(? x \phi(x, v)): M, T \cap T^{\prime} \vDash \psi(\nu)
$$

Take an initial team $T^{v}=\left\{v_{a}, v_{b}\right\}$ with $D=\{a, b\}$.

Illustration

Whoever comes to the talk, I should present well.

$$
M, T \models ? x \phi(x, \nu) \Rightarrow \psi(\nu) \Leftrightarrow \forall T^{\prime} \in A l t(? x \phi(x, \nu)): M, T \cap T^{\prime} \vDash \psi(\nu)
$$

Take an initial team $T^{v}=\left\{v_{a}, v_{b}\right\}$ with $D=\{a, b\}$.

However, consider $T^{v}=\left\{v_{a b}\right\}$. Felicitous even in a context in which we know that both a and b come to talk.

Exhaustification

Two possible routes:
(i) We adopt a partion treatment of questions from the beginning;
(ii) We add an exhaustification operator.

Non-Empty Requirement

Whoever comes to the talk, I should present well.
$M, T \models ? x \phi(x, \nu) \Rightarrow \psi(\nu) \Leftrightarrow \forall T^{\prime} \in \operatorname{Alt}(? x \phi(x, \nu)): M, T \cap T^{\prime} \vDash \psi(\nu)$

However, consider $T^{\nu}=\left\{v_{b}\right\}$. Note that $M, \varnothing \vDash \psi(\nu)$.

[^2]
Non-Empty Requirement

Whoever comes to the talk, I should present well.
$M, T \models ? x \phi(x, \nu) \Rightarrow \psi(\nu) \Leftrightarrow \forall T^{\prime} \in \operatorname{Alt}(? x \phi(x, \nu)): M, T \cap T^{\prime} \vDash \psi(\nu)$

However, consider $T^{v}=\left\{v_{b}\right\}$. Note that $M, \varnothing \vDash \psi(\nu)$.
We thus require that all alternatives in the antecedent intersect with the inital team $T: T \cap T^{\prime} \neq \varnothing .^{2}$
$M, T \models ? x \phi(x, v) \Rightarrow \psi(\nu) \Leftrightarrow \forall T^{\prime} \in \operatorname{Alt}(? x \phi(x, v)): M, T \cap T^{\prime} \vDash$ $\psi(\nu)$ and $T \cap T^{\prime} \neq \varnothing$.

[^3]
Unconditionals and variation

(17) Unconditional

Wie dan ook comes to the talk, I should present well. Whoever comes to the talk, I should present well.
$M, T \vDash(? x \phi(x, v)) \Rightarrow \psi(\nu) \Leftrightarrow \forall T^{\prime} \in \operatorname{Alt}(? x \phi(x, \nu)): M, T \cap T^{\prime} \vDash$ $\psi(\nu)$ and $T \cap T^{\prime} \neq \varnothing$.

Unconditionals and variation

(17) Unconditional

Wie dan ook comes to the talk, I should present well. Whoever comes to the talk, I should present well.
$M, T \vDash(? x \phi(x, \nu)) \Rightarrow \psi(\nu) \Leftrightarrow \forall T^{\prime} \in \operatorname{Alt}(? x \phi(x, \nu)): M, T \cap T^{\prime} \vDash$ $\psi(\nu)$ and $T \cap T^{\prime} \neq \varnothing$.

This non-empty requirement gives us that the following must hold in the initial team T :

$$
M, T \vDash \exists_{s} x\left(\phi(x, v) \wedge V A R_{|D|}(\varnothing, x)\right)
$$

In other words, an unconditional is felicitous if we are in a situation where any individual might satisfy the antecedent.

We classify the $V A R_{|D|}(\varnothing, x)$ condition as a form of 'pragmatic' inference, as it follows from the non-empty requirement operative in the unconditional.

Appositives

Appositives contribute to non-at-issue dimension of semantic meaning:
(18) John, the postman, walks.
a. AT-ISSUE: $W(j)$
b. NON-AT-ISSUE:: $P(j)$

Appositives

Appositives contribute to non-at-issue dimension of semantic meaning:
(18) John, the postman, walks.
a. AT-ISSUE: $W(j)$
b. NON-AT-ISSUE:: $P(j)$

In the diachronic data, we find similar appositive constructions:
(19) 'Referential Appositive' John, wie dan ook, passed the exam. Ignorance: John passed the exam and the speaker does not know who John is.
(20) 'Non-Referential Appositive'

A student, wie dan ook, can pass the exam.
Free Choice: Any student can pass the exam.
[Potts 2005; Schlenker 2010; Wang, Reese, and McCready 2005]

Proper Names

Proper names refer to the same individual in a particular epistemic possibility of the speaker: $\operatorname{dep}(\nu, j)$ holds for any name j.

But the value of proper names may differ across epistemic possibilities.
(21) a. John passed the exam.
b. $\quad P(j, v)$

v	j
v_{1}	d_{1}
v_{2}	d_{2}
v_{3}	d_{2}
v_{4}	d_{3}

Appositives and Proper Names

Proposal: the variation condition $V A R_{|D|}(\varnothing, x)$ we discussed for the unconditional now represents the contribution of the appositive at a non-at-issue level:
(22) John, wie dan ook, passed the exam.
a. At issue: $P(j, v)$
b. Non at-issue: $V A R_{|D|}(\varnothing, j)$

v	j
v_{1}	d_{1}
v_{2}	d_{2}
\ldots	\ldots
v_{n}	d_{n}

Appositives and non-referential expressions

(23) A student, wie dan ook, can pass the exam.
a. At issue: $\exists_{l} w \exists_{s} x \quad \phi(x, w)$
b. Non at-issue: $V A R_{|D|}(\varnothing, x)$

v	w	x
v_{1}	w_{1}	d_{1}

v	w	x
v_{1}	w_{1}	d_{1}
v_{1}	\ldots	\ldots
v_{2}	\ldots	\ldots
v_{2}	w_{n}	d_{n}

v	w	x
v_{1}	w_{1}	d_{1}
v_{1}	w_{2}	d_{2}
v_{1}	\ldots	\ldots
v_{1}	w_{n}	d_{n}

(a) corresponds to a specific use of total ignorance, while (c) is the non-specific narrow-scope reading conveying free choice.

Strengthening of $V A R_{|D|}(\varnothing, x)$ to $V A R_{|D|}(\nu, x)$:
(1) Disambiguation: $V A R_{|D|}(v, x)$ only compatible with narrow-scope.
(2) Conventionalization of the strongest possible meaning.

Appositives and non-referential expressions

(23) A student, wie dan ook, can pass the exam.
a. At issue: $\exists_{l} w \exists_{s} x \quad \phi(x, w)$
b. Non at-issue: $V A R_{|D|}(\varnothing, x)$

v	w	x
v_{1}	w_{1}	d_{1}

$v_{2} \quad w_{2} \quad d_{2}$
$\begin{array}{ccc}\cdots & \cdots & \cdots \\ v_{n} & w_{n} & d_{n}\end{array}$

v	w	x
v_{1}	w_{1}	d_{1}
v_{1}	\ldots	\ldots
v_{2}	\ldots	\ldots
v_{2}	w_{n}	d_{n}

v	w	x
v_{1}	w_{1}	d_{1}
v_{1}	w_{2}	d_{2}
v_{1}	\ldots	\ldots
v_{1}	w_{n}	d_{n}

(a) corresponds to a specific use of total ignorance, while (c) is the non-specific narrow-scope reading conveying free choice.

Strengthening of $V A R_{|D|}(\varnothing, x)$ to $V A R_{|D|}(\nu, x)$:
(1) Disambiguation: $V A R_{|D|}(v, x)$ only compatible with narrow-scope.
(2) Conventionalization of the strongest possible meaning.

Non-specific uses are only possible in (modal) embedded contexts. 29/37

Merging at-issue and non-at-issue

We merge AT-ISSUE and NON-AT-ISSUE semantic content to preserve the anaphoric relations between the two dimensions. ${ }^{3}$
$T \vDash \operatorname{merge}\left(\phi_{\text {at-issue }} / \wedge \phi_{\text {non-at-issue }}\right)$ iff
$\mathrm{T} \vDash \phi_{\mathrm{at} \text {-issue }}$ and there is a T^{\prime} s.t. $T\left[\phi_{\text {at-issue }}\right] T^{\prime}$ and $T^{\prime} \vDash \phi_{\text {non-at-issue }}$
(24) A student, wie dan ook, can pass the exam.
a. At issue: $\exists_{l} w \exists_{s} x(\phi(x, w))$
b. Non at-issue: $V A R_{|D|}(v, x)$

v	v	w	x	v	w	x
ν_{1}	ν_{1}	w_{1}	d_{1}	ν_{1}	w_{1}	d_{1}
...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
v_{n}	v_{n}	w_{n}	d_{n}	v_{n}	w_{n}	d_{n}

${ }^{3}$ See Appendix B for a Dynamic Team Semantics which behaves accordingly.

Free Choice

In the last phase, the strengthened $V A R_{|D|}(v, x)$ is integrated into the semantics of the indefinite.
(25) a. Wie dan ook can pass the exam.
b. $\exists_{l} w \exists_{s} x\left(\phi(x, \nu) \wedge V A R_{|D|}(\nu, x)\right)$

v	w	x
	\vdots	d_{1}
v_{1}	\vdots	d_{2}
	\vdots	\ldots
	\vdots	d_{n}

Outline

1. Indefinites and FC
2. Grammaticalization
3. Team Semantics
4. Formal Diachronic Analysis
5. Conclusion

Trajectory of Semantic Change

Our proposal suggests the following trajectory of semantic change
(1) 'Pragmatic' inference $V A R_{|D|}(\varnothing, x)$
(2) NON-AT-ISSUE meaning $V A R_{|D|}(\varnothing, x)$
(3) Strengthening of NON-AT-ISSUE meaning to $V A R_{|D|}(\nu, x)$
(4) AT-ISSUE meaning $V A R_{|D|}(v, x)$

NON-AT-ISSUE content in (2) and (3) as a conventionalization bridge for the integration of an originally pragmatic inference into at-issue semantic content.

Conclusion

THANK YOU!

Conclusion

THANK YOU!

1. Indefinites and FC
1.1 Indefinite

Pronouns
1.2 Indefinites and Free Choice
2. Grammaticalization
2.1 Grammaticalization Patterns
2.2 Unconditional phase
2.3 Appositive phase
2.4 Indefinite phase
3. Team Semantics

3.1 Team Semantics

3.2 Teams as information states
3.3 Aloni \& Degano (2022)

3.4 Generalized Variation

3.5 Some Facts
4. Formal Diachronic

Analysis
4.1 General Plan
4.2 Unconditionals
4.3 Questions and Team

Semantics
4.4 Unconditionals and variation
4.5 Appositives
4.6 Proper Names
4.7 Appositives and Proper Names
4.8 Appositives and non-referential expressions
4.9 Merging at-issue and non-at-issue
4.10 Free Choice
5. Conclusion
5.1 Trajectory of Semantic Change

Semantic Clauses

$M, T \vDash P\left(x_{1}, \ldots, x_{n}\right)$	\Leftrightarrow	$\forall j \in T:\left\langle j\left(x_{1}\right), \ldots, j\left(x_{n}\right)\right\rangle \in I\left(P^{n}\right)$
$M, T \vDash \phi \wedge \psi$	\Leftrightarrow	$M, T \vDash \phi$ and $M, T \vDash \psi$
$M, T \vDash \phi \vee \psi$	\Leftrightarrow	$T=T_{1} \cup T_{2}$ for teams T_{1} and T_{2} s.t. $M, T_{1} \vDash$ ϕ and $M, T_{2} \vDash \psi$
$M, T \vDash \forall z \phi$	\Leftrightarrow	$M, T[z] \vDash \phi$, where $T[z]=\{i[d / z]: i \in$ T and $d \in D\}$
$M, T \vDash \exists_{\text {strict }} z \phi$	\Leftrightarrow	there is a function $h: T \rightarrow D$ s.t. $M, T[h / z] \vDash \phi$, where $T[h / z]=\{i[h(i) / z]:$ $i \in T\}$
$M, T \vDash \exists_{\mathrm{lax}} z \psi$	\Leftrightarrow	there is a function $f: T \rightarrow \wp(D) \backslash\{\varnothing\}$ s.t. $M, T[f / z] \vDash \phi$, where $T[f / z]=\{i[d / z]: i \in$ T and $d \in f(i)\}$
$M, T \vDash \operatorname{dep}(\vec{z}, u)$	\Leftrightarrow	for all $i, j \in T: i(\vec{z})=j(\vec{z}) \Rightarrow i(u)=j(u)$
$M, T \vDash \operatorname{var}(\vec{z}, u)$	\Leftrightarrow	there is $i, j \in T: i(\vec{z})=j(\vec{z}) \& i(u) \neq j(u)$
$M, T \vDash \operatorname{var}(\vec{z}, u)$	\Leftrightarrow	there is $i, j \in T: i(\vec{z})=j(\vec{z}) \& i(u) \neq j(u)$
$M, T \vDash V A R_{n}(\vec{z}, u)$	\Leftrightarrow	for all $i \in T: \mid\{j(u): j \in T$ and $i(\vec{z})=j(\vec{z})\} \mid \geq$

A dynamic team semantics

$\left\langle T, T^{\prime}\right\rangle \in \llbracket P\left(t_{1} \ldots t_{n}\right) \rrbracket_{M}$	iff \quad	$T=T^{\prime}$ and for all $i \in T,\left\langle i\left(t_{1}\right), \ldots, i\left(t_{n}\right)\right\rangle \in$
	$I(P)$	
$\left\langle T, T^{\prime}\right\rangle \in \llbracket d e p(\vec{z}, u) \rrbracket_{M}$	iff \quad	$T=T^{\prime}$ and for all $i, j \in T: i(\vec{z})=j(\vec{z}) \Rightarrow$
	$i(u)=j(u)$	
$\left\langle T, T^{\prime}\right\rangle \in \llbracket \phi \wedge \psi \rrbracket_{M}$	iff $\quad \exists X:\langle T, X\rangle \in \llbracket \phi \rrbracket_{M}$ and $\left\langle X, T^{\prime}\right\rangle \in \llbracket \psi \rrbracket_{M}$	
$\left\langle T, T^{\prime}\right\rangle \in \llbracket \phi \vee \psi \rrbracket_{M}$	iff $\quad \exists T_{1}, T_{2}, T_{1}^{\prime}, T_{2}^{\prime}$ s.t. $T=T_{1} \cup T_{2}, T^{\prime}=T_{1}^{\prime} \cup$	
		$T_{2}^{\prime},\left\langle T_{1}, T_{1}^{\prime}\right\rangle \in \llbracket \phi \rrbracket_{M}$ and $\left\langle T_{2}, T_{2}^{\prime}\right\rangle \in \llbracket \psi \rrbracket_{M}$
$\left\langle T, T^{\prime}\right\rangle \in \llbracket \exists s z \phi \rrbracket_{M}$	iff $\quad \exists X: T\left[z_{s} \rrbracket T^{\prime}\right.$ and $\left\langle T, T^{\prime}\right\rangle \in \llbracket \phi \rrbracket_{M}$	
$\left\langle T, T^{\prime}\right\rangle \in \llbracket \exists_{l} z \phi \rrbracket_{M}$	iff $\quad \exists X: T\left[z_{l}\right] T^{\prime}$ and $\left\langle T, T^{\prime}\right\rangle \in \llbracket \phi \rrbracket_{M}$	
$\left\langle T, T^{\prime}\right\rangle \in \llbracket \forall z \phi \rrbracket_{M}$	iff $\quad T=T^{\prime}$ and $\exists X, X^{\prime}: T\left[z_{u}\right] X$ and $\left\langle X, X^{\prime}\right\rangle \in$	
	$\llbracket \phi \rrbracket_{M}$	

Negation can be defined as the dual negation.
(Alternative notation for $\left\langle T, T^{\prime}\right\rangle \in \llbracket \phi \rrbracket: T[\phi] T^{\prime}$)

A dynamic team semantics with post-suppositions

We can treat dependency atoms as post-suppositions (of existential sentences).
$T\left[\phi_{\psi}\right]^{+} T^{\prime} \quad$ iff $\quad T[\phi]^{+} T^{\prime}$ if $\exists X: T^{\prime}[\psi]^{+} X$; undefined otherwise $T\left[\phi_{\psi}\right]^{-} T^{\prime}$ iff $T[\phi]^{-} T^{\prime}$ if $\exists X: T^{\prime}[\psi]^{+} X$; undefined otherwise

This also allows us to capture the merging of AT-ISSUE and NON-AT-ISSUE content and the projection behaviour of non-at-issue content under negation:

$$
\begin{aligned}
T\left[\phi(x, v)_{V A R(v, x)}\right]^{+} T^{\prime} \quad \text { iff } \quad & T[\phi(x, v)]^{+} T^{\prime}, \text { if } \exists X: X=T^{\prime} \text { and for all } i \in \\
& X: \mid\{j(x): j \in X \text { and } i(v)=j(v)\}|=|D| \\
\text { iff } \quad & T[\phi(x, v)]^{+} T^{\prime}, \text { if for all } i \in T^{\prime}: \mid\{j(x): j \in \\
& \left.T^{\prime} \text { and } i(v)=j(v)\right\}|=|D|
\end{aligned}
$$

References

Aloni, Maria (2007). "Free choice and exhaustification: an account of subtrigging effects". In: Proceedings of Sinn und Bedeutung. Vol. 11, pp. 16-30.
Aloni, Maria and Marco Degano (2022). "(Non-)specificity across languages: constancy, variation, v-variation". In: Semantic and Linguistic Theory (SALT) 32. URL: HTTPS://DOI.ORG/10.3765/SALT.V1IO. 5337.
Chierchia, Gennaro (2013). Logic in grammar: Polarity, free choice, and intervention. OUP Oxford. DOI:
10.1093/ACPROF: OSO/9780199697977.001.0001.

Ciardelli, Ivano (2016). "Lifting conditionals to inquisitive semantics". In: Semantics and Linguistic Theory. Vol. 26, pp. 732-752. DOI: 10.3765/SALT.V26I0. 3811 .

- (2022). Inquisitive Logic: Consequence and Inference in the Realm of Questions. Springer Nature.
Ciardelli, Ivano, Jeroen Groenendijk, and Floris Roelofsen (2018). Inquisitive semantics. Oxford University Press. DOI:
10.1093/oso/9780198814788.001.0001.

References

Company Company, Concepción and Julia Pozas Loyo (2006). "Los indefinidos compuestos y los pronombres genérico-impersonales omne y uno". In: Sintaxis histórica de la lengua española. Fondo de Cultura Económica, pp. 1073-1222.
Dayal, Veneeta (1998). "Any as inherently modal". In: Linguistics and Philosophy 21.5, pp. 433-476. DOI: 10.1023/A:1005494000753.
Degano, Marco (2022). Meaning Interfaces in Language Change: Free Choice, Unconditionals and Appositives. Formal Diachronic Semantics 7.
Degano, Marco and Maria Aloni (2021). "Indefinites and free choice". In: Natural Language \& Linguistic Theory 40.2, pp. 447-484.
Galliani, Pietro (2012). "The dynamics of imperfect information". PhD thesis. ILLC, University of Amsterdam. URL: HTTPS://HDL.HANDLE.NET/11245/1.377053.
Giannakidou, Anastasia (2001). "The meaning of free choice". In: Linguistics and Philosophy 24.6, pp. 659-735. DOI: 10.1023/A:1012758115458.
Halm, Tamás (2021). Want, unconditionals, ever-free-relatives and scalar particles: the sources of free-choice items in Hungarian. Formal Diachronic Semantics 6, University of Cologne.
Haspelmath, Martin (1997). Indefinite Pronouns. Oxford University Press. URL: HTTPS://DOI.ORG/10.1093/oso/9780198235606.001.0001.

References

Hodges, Wilfrid (1997). "Compositional semantics for a language of imperfect information". In: Logic Journal of the IGPL 5.4, pp. 539-563. URL:
HTTPS://DOI.ORG/10.1093/JIGPAL/5.4.539.
Jayez, Jacques and Lucia M Tovena (2005). "Free choiceness and non-individuation". In: Linguistics and Philosophy 28.1, pp. 1-71.
Menéndez-Benito, Paula (2005). "The grammar of choice". PhD thesis. University of Massachusetts Amherst Amherst, MA. URL: HTTPS://SCHOLARWORKS.UMASS.EDU/DISSERTATIONS/AAI3193926/.
Pescarini, Sandrine (2010). "N'importe qu-: diachronie et interprétation". In: Langue française 2, pp. 109-131.
Potts, Christopher (2005). The logic of conventional implicatures. 7. Oxford University Press. DOI: 10.1093/acprof:oso/9780199273829.001.0001.
Rawlins, Kyle (2008). "(Un) conditionals: An investigation in the syntax and semantics of conditional structures". PhD thesis. University of California, Santa Cruz.
Schlenker, Philippe (2010). "Supplements within a Unidimensional Semantics I: Scope". In: Logic, Language and Meaning. Ed. by Maria Aloni et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 74-83.

References

Väänänen, Jouko (2007). Dependence Logic: A New Approach to Independence Friendly Logic. Vol. 70. Cambridge University Press. URL: hTTPS://Doi.org/10.1017/CB09780511611193.
de Vos, Machteld (2010). Wh dan ook: The synchronic and diachronic study of the grammaticalization of a Dutch indefinite. BA thesis, University of Amsterdam.
Väänänen, Jouko (2022). "An atom's worth of anonymity". In: Logic Journal of the IGPL. URL: HTTPS://doi .org/10.1093/Jigpal/Jzac074.
Wang, Linton, Brian Reese, and Eric McCready (2005). "The projection problem of nominal appositives". In: Snippets 10.1, pp. 13-14.

[^0]: ${ }^{1}$ A similar analysis can be put forward for unconditionals of the form 'whether Mary or John will come to talk, ...', since inquisitive disjunction is definable with dependence atoms:

[^1]: ${ }^{1}$ A similar analysis can be put forward for unconditionals of the form 'whether Mary or John will come to talk, ...', since inquisitive disjunction is definable with dependence atoms:

[^2]: ${ }^{2}$ Conditional antecedents are typically taken to be consistent with the context set (Stalnaker 1976, Gillies 2004).

[^3]: ${ }^{2}$ Conditional antecedents are typically taken to be consistent with the context set (Stalnaker 1976, Gillies 2004).

