A team semantics for FC indefinites and their grammaticalization

Marco Degano University of Amsterdam

TbiLLC 2023, Telavi 18 Sep 2023

Plan of the talk

- $1. \ {\sf Indefinites} \ {\sf and} \ {\sf FC}$
- 2. Grammaticalization
- 3. Team Semantics
- 4. Formal Diachronic Analysis
- 5. Conclusion

Outline

- 1. Indefinites and FC
- 2. Grammaticalization
- 3. Team Semantics
- 4. Formal Diachronic Analysis
- 5. Conclusion

Indefinite Pronouns

The English *some*-series, a canonical example of indefinite pronoun:

(1) John bought **something** yesterday.

Indefinite Pronouns

The English *some*-series, a canonical example of indefinite pronoun:

(1) John bought **something** yesterday.

However, cross-linguistically indefinites display a **great variety in** form and meaning. For instance, the specific $-\mathfrak{Gog}$ (*-ghats*) vs the non-specific $-\mathfrak{go}$ (*-me*) in Georgian:

- (2) ჯონმა გუშინ რაღაც/*რამე იყიდა
 John-ERG yesterday raghats/*rame buy-PST.3SG
 'John bought something yesterday.'
- (3) ჯონს გუშინ რაღაც-ის/რამე-ის ყიდვა
 John-DAT yesterday raghats/rame-GEN buy-INF
 სურდა
 want-PST.3SG

'John wanted to buy something yesterday.'

Indefinites and Free Choice

- (4) a. You can take any book.
 - b. You can take a book and every book is a possible option.

[Aloni 2007; Chierchia 2013; Dayal 1998; Giannakidou 2001; Jayez and Tovena 2005; Menéndez-Benito 2005] 5/37

Indefinites and Free Choice

- (4) a. You can take any book.
 - b. You can take a book and every book is a possible option.

They are quite frequent cross-linguistically:

English *anyone* Spanish *cualquier(a)* Japanese *daredemo*

...

Italian *qualunque* Dutch *wie dan ook* Hebrew *kol*

[Aloni 2007; Chierchia 2013; Dayal 1998; Giannakidou 2001; Jayez and Tovena 2005; Menéndez-Benito 2005]

Indefinites and Free Choice

- (4) a. You can take any book.
 - b. You can take a book and every book is a possible option.

They are quite frequent cross-linguistically:

English anyone	Italian <i>qualunque</i>
Spanish <i>cualquier(a)</i>	Dutch wie dan ook
Japanese <i>daredemo</i>	Hebrew <i>kol</i>

They normally cannot occur freely, but they display restricted distributions (e.g., they are licensed by modals):

(5) a. *Anyone fell.

...

b. Anyone could fall.

[Aloni 2007; Chierchia 2013; Dayal 1998; Giannakidou 2001; Jayez and Tovena 2005; Menéndez-Benito 2005] 5

Outline

1. Indefinites and FC

- 2. Grammaticalization
- 3. Team Semantics
- 4. Formal Diachronic Analysis
- 5. Conclusion

Grammaticalization Patterns

The grammaticalization of *wh*-based FC indefinites has been studied in several diachronic works:

A broad cross-linguistic generalization of the grammaticalization process:

- Unconditional phase
- Appositive phase
- Indefinite phase

[Company Company and Loyo 2006; Degano 2022; Degano and Aloni 2021; Halm 2021; Haspelmath 1997; Pescarini 2010; de Vos 2010] 7/37

Grammaticalization Patterns

The grammaticalization of *wh*-based FC indefinites has been studied in several diachronic works:

A broad cross-linguistic generalization of the grammaticalization process:

- Unconditional phase
- Appositive phase
- Indefinite phase

To illustrate this trend, we will use the Dutch indefinite *wie dan ook* as a representative item, while keeping the rest of the simplified examples in English.

[Company Company and Loyo 2006; Degano 2022; Degano and Aloni 2021; Halm 2021; Haspelmath 1997; Pescarini 2010; de Vos 2010] 7/37

Unconditional phase

First phase: Unconditional headed by a *wh*-element. Typically in combination with other elements (e.g., *dan ook* in the case of *wie dan ook*) will then be part of the grammaticalized indefinite.

(6) UNCONDITIONAL

Wie dan ook comes to the talk, I should present well. Whoever comes to the talk, I should present well.

Appositive phase

Intermediate phase: the expression occurs as appositive often marked by two commas. Two typical anchors:

- the anchor is a 'referential expression' (e.g., a proper name), as in (7);
- the anchor is a non-referential expression (e.g., a plain indefinite), as in (8).
- (7) John, wie dan ook, passed the exam. Ignorance: John passed the exam and the speaker does not know who John is.
- (8) A student, *wie dan ook*, can pass the exam.Free Choice: Any student can pass the exam.

Indefinite phase

Final phase: full-fledged determiner or pronoun:

(9) Wie dan ook can pass the exam.
 Free Choice: Anyone can pass the exam.

Outline

- 1. Indefinites and FC
- 2. Grammaticalization
- 3. Team Semantics
- 4. Formal Diachronic Analysis
- 5. Conclusion

Team Semantics

In team semantics, formulas are evaluated wrt a **set of evaluation points**, called **team**.

Т	x	у
i_1	d_1	d_1
i_2	d_1	d_1
i_3	d_2	d_1
i_4	d_2	d_1

A team T: a set of assignments $i: V \rightarrow M$

[Hodges 1997; Väänänen 2007]

Team Semantics

In team semantics, formulas are evaluated wrt a **set of evaluation points**, called **team**.

Т	x	у
i_1	d_1	d_1
i_2	d_1	d_1
i_3	d_2	d_1
i_4	d_2	d_1

A team T: a set of assignments $i: V \rightarrow M$

This allows us to express relationships of functional **dependence** between variables.

Dependence Atom:

 $M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$

Team Semantics

In team semantics, formulas are evaluated wrt a **set of evaluation points**, called **team**.

Т	x	y
i_1	d_1	d_1
i_2	d_1	d_1
i_3	d_2	d_1
i_4	d_2	d_1

A team T: a set of assignments $i: V \rightarrow M$

This allows us to express relationships of functional **dependence** between variables.

Dependence Atom:

 $M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$

 $\frac{dep(x,y)}{dep(x,y)} \checkmark \qquad \frac{dep(x,y)}{dep(y,x)} \checkmark$ [Hodges 1997; Väänänen 2007]

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

ν	
v_1	
v_2	
v_n	

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team *T* is *initial* iff $Dom(T) = \{v\}$.

v	x	
v_1	а	
v_2	a	
	a	
v_n	а	

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

v	x	w	
v_1	а	w_1	
v_2	а	w_2	
	а		
v_n	а	w_n	

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team *T* is *initial* iff $Dom(T) = \{v\}$.

v	x	w	у	
v_1	а	w_1	b_1	
v_2	а	w_2	b_2	
	а			
v_n	а	w_n	b_n	

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

v	x	w	у	
v_1	а	w_1	b_1	•••
v_2	а	w_2	b_2	
	а			
v_n	а	w_n	b_n	

Aloni and Degano (2022): two-sorted team semantics, with v as designated variable for the actual world.

Teams as information states of speakers. In initial teams only factual information is represented. The world variable v captures the speaker's epistemic state.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

v	x	w	у	
v_1	а	w_1	b_1	
v_2	а	w_2	b_2	
	а			
v_n	а	w_n	b_n	

Discourse information is added by operations of assignment extensions.

Felicitous sentence : A sentence is *felicitous/grammatical* if there is an initial team which supports it.

Aloni & Degano (2022) - Basics

Indefinites are treated as **strict** existentials (i.e., extensions of the form $T \rightarrow D$):

(10)	Samaana sallad	v	x
(10)	Someone called.	v_1	d_1
	$\exists_{\mathbf{s}} \mathbf{x} \ \phi(x, v)$	v_2	d_2

Aloni & Degano (2022) - Basics

Indefinites are treated as **strict** existentials (i.e., extensions of the form $T \rightarrow D$):

(10)		v	x
(10)	Someone called.	v_1	d_1
	$\exists_{\mathbf{s}} \mathbf{x} \ \phi(x, v)$	v_2	d_2

Universal quantifiers are captured via universal extensions:

		v	x
(11)	Everyone called. $\forall \mathbf{x} \ \phi(x, v)$	 v_1	d_1
		v_1	d_2
		v_2	d_1
		v_2	d_2

Aloni & Degano (2022) - Basics

Indefinites are treated as **strict** existentials (i.e., extensions of the form $T \rightarrow D$):

(10)		v	x
(10)	Someone called.	v_1	d_1
	$\exists_{\mathbf{s}} \mathbf{x} \ \phi(x, v)$	v_2	d_2

Universal quantifiers are captured via universal extensions:

		v	x
(11)	Everyone called. $\forall \mathbf{x} \ \phi(x, v)$	v_1	d_1
		v_1	d_2
		v_2	d_1
		v_2	d_2

Existential modals are treated as **lax** existentials (i.e., extensions of the form $T \rightarrow \mathcal{P}(W) \setminus \{\emptyset\}$)

14/37

		v	w	
(12)	John may walk.	v_1	w_1	
. ,	$\exists_{l} \mathbf{w} \phi(j, w)$	v_2	w_1	
		v_2	w_2	

Aloni & Degano (2022) - Marked Indefinites

In Aloni & Degano (2022), marked indefinites trigger the obligatory activation of particular atoms, responsible for their enriched meaning and restricted distribution:

TYPE	REQUIREMENT	EXAMPLE
(i) unmarked	none	Italian <i>qualcuno</i>
(ii) specific	dep(v, x)	Georgian <i>-ghats</i>
(iii) non-specific	var(v, x)	Georgian <i>-me</i>
(iv) epistemic	$var(\emptyset, x)$	German <i>irgend</i> -
(v) specific known	$dep(\emptyset, x)$	Russian <i>koe</i> -
(vi) SK + NS	$dep(\emptyset, x) \lor var(v, x)$	unattested
(vii) specific unknown	$dep(v,x) \wedge var(\varnothing,x)$	Kannada <i>-oo</i>

Marked (Non)-specific Indefinites

Aloni & Degano (2022) - Marked Indefinites

In Aloni & Degano (2022), marked indefinites trigger the obligatory activation of particular atoms, responsible for their enriched meaning and restricted distribution:

TYPE	REQUIREMENT	EXAMPLE
(i) unmarked	none	Italian <i>qualcuno</i>
(ii) specific	dep(v, x)	Georgian <i>-ghats</i>
(iii) non-specific	var(v, x)	Georgian <i>-me</i>
(iv) epistemic	$var(\emptyset, x)$	German <i>irgend</i> -
(v) specific known	$dep(\emptyset, x)$	Russian <i>koe</i> -
(vi) SK + NS	$dep(\emptyset, x) \lor var(v, x)$	unattested
(vii) specific unknown	$dep(v,x) \wedge var(\varnothing,x)$	Kannada <i>-oo</i>

Marked (Non)-specific Indefinites

Can we extend the account to free choice indefinites?

Generalized Variation

Generalized Variation Atom

 $M, T \models VAR_n(\vec{z}, u) \Leftrightarrow \text{ for all } i \in T : |\{j(u) : j \in T \text{ and } i(\vec{z}) = j(\vec{z})\}| \ge n$

 $M, T \models VAR_{|D|}(v, x) \Leftrightarrow \text{ for all } i \in T : |\{j(x) : j \in T \text{ and } i(v) = j(v)\}| = |D|$

(13) You can take anything. $\exists_l w \exists_s x(\phi(x, w) \wedge VAR_{|D|}(v, x))$

[Galliani 2012; Väänänen 2022]

Some facts

FC indefinites are ungrammatical in episodic contexts, since we analyze them as strict existentials with a total variation component:

(14) *John took anything $\exists_s x(\varphi(x, v) \wedge VAR_{|D|}(v, x))$

v	x
v_1	d_1
v_2	d_2
v_n	d_n

Some facts

FC indefinites are ungrammatical in episodic contexts, since we analyze them as strict existentials with a total variation component:

(14) *John took anything $\exists_s x(\varphi(x, v) \wedge VAR_{|D|}(v, x))$

v	x	
v_1	d_1	
v_2	d_2	
v_n	d_n	

FC indefinites cannot be licensed by *bona-fide* quantifiers: $VAR_{|D|}(v\vec{y}, x)$

(15) *Everyone took anything $\forall y \exists_s x(\varphi(x, v) \land VAR_{|D|}(vy, x))$

Outline

- 1. Indefinites and FC
- 2. Grammaticalization
- 3. Team Semantics
- 4. Formal Diachronic Analysis
- 5. Conclusion

General Plan

Phases	TOTAL VARIATION
1. Unconditional	Pragmatic inference $VAR_{ D }(\emptyset, x)$
	\downarrow conventionalization
	Conventional NON-AT-ISSUE $VAR_{ D }(\emptyset, x)$
2. Appositive	↓ strengthening
	Conventional NON-AT-ISSUE $VAR_{ D }(v, x)$
	↓ integration
3. Indefinite	Conventional AT-ISSUE $VAR_{ D }(v, x)$

Conjecture on grammaticalization processes:

Total variation as an originally pragmatic inference.

Appositive phase as a **conventionalization** bridge for **integrating** total variation into the semantic content of the indefinite.

Unconditionals

The antecedent of an unconditional denotes an **interrogative clause**, analyzed as a set of alternatives/teams.

- (16) UNCONDITIONAL
 - a. Whoever comes to the talk, I should present well
 - b. $?x\phi(x,v) \Rightarrow \psi(v)$

 $\phi \lor \psi = \exists x \exists y (dep(\emptyset, x) \land dep(\emptyset, y) \land (x = y \land \phi) \lor (x \neq y \land \psi))$ [Ciardelli 2016; Rawlins 2008]

 $^{^{1}}$ A similar analysis can be put forward for unconditionals of the form 'whether Mary or John will come to talk, ...', since inquisitive disjunction is definable with dependence atoms:

Unconditionals

The antecedent of an unconditional denotes an **interrogative clause**, analyzed as a set of alternatives/teams.

(16) UNCONDITIONAL

- a. Whoever comes to the talk, I should present well
- b. $?x\phi(x,v) \Rightarrow \psi(v)$

Proposal: an unconditional requires for *all* alternatives T' of the antecedent, that their intersection with the initial team T supports the consequent.¹

$$M, T \models \phi \Rightarrow \psi \Leftrightarrow \forall T' \in Alt(\phi) : M, T \cap T' \models \psi$$

 $\phi \lor \psi = \exists x \exists y (dep(\emptyset, x) \land dep(\emptyset, y) \land (x = y \land \phi) \lor (x \neq y \land \psi))$ [Ciardelli 2016; Rawlins 2008]

¹A similar analysis can be put forward for unconditionals of the form 'whether Mary or John will come to talk, ...', since inquisitive disjunction is definable with dependence atoms:

Unconditionals

The antecedent of an unconditional denotes an **interrogative clause**, analyzed as a set of alternatives/teams.

(16) UNCONDITIONAL

- a. Whoever comes to the talk, I should present well
- b. $?x\phi(x,v) \Rightarrow \psi(v)$

Proposal: an unconditional requires for *all* alternatives T' of the antecedent, that their intersection with the initial team T supports the consequent.¹

$$M, T \models \phi \Rightarrow \psi \Leftrightarrow \forall T' \in Alt(\phi) : M, T \cap T' \models \psi$$

How to define $Alt(\phi)$?

 $\phi \lor \psi \equiv \exists x \exists y (dep(\emptyset, x) \land dep(\emptyset, y) \land (x = y \land \phi) \lor (x \neq y \land \psi))$ [Ciardelli 2016; Rawlins 2008]

 $^{^{1}}$ A similar analysis can be put forward for unconditionals of the form 'whether Mary or John will come to talk, ...', since inquisitive disjunction is definable with dependence atoms:

Questions and Team Semantics

A team-based system gives naturally rise to a treatment of questions by taking teams as set of alternatives.

The framework is expressive enough to take different theoretical choices (partition semantics, inquisitive semantics, ...).

Questions and Team Semantics

A team-based system gives naturally rise to a treatment of questions by taking teams as set of alternatives.

The framework is expressive enough to take different theoretical choices (partition semantics, inquisitive semantics, ...).

Preliminary observation: *Wh*-questions are typically associated with **existential presuppositions**: 'Who danced?' presupposes that 'Someone danced'.

[Ciardelli 2022; Ciardelli, Groenendijk, and Roelofsen 2018]

Illustration

Whoever comes to the talk, I should present well.

 $M, T \models ?x\phi(x, v) \Rightarrow \psi(v) \Leftrightarrow \forall T' \in Alt(?x\phi(x, v)): M, T \cap T' \models \psi(v)$

Take an initial team $T^v = \{v_a, v_b\}$ with $D = \{a, b\}$.

Alt($(x\phi(x, v))$

Illustration

Whoever comes to the talk, I should present well.

 $M, T \models ?x\phi(x, v) \Rightarrow \psi(v) \Leftrightarrow \forall T' \in Alt(?x\phi(x, v)): M, T \cap T' \models \psi(v)$

Take an initial team $T^v = \{v_a, v_b\}$ with $D = \{a, b\}$.

Alt($(x\phi(x, v))$)

However, consider $T^{\nu} = \{v_{ab}\}$. Felicitous even in a context in which we *know* that both *a* and *b* come to talk.

Exhaustification

Two possible routes:

- (i) We adopt a partion treatment of questions from the beginning;
- (ii) We add an exhaustification operator.

Non-Empty Requirement

Whoever comes to the talk, I should present well.

 $M,T \models ?x\phi(x,v) \Rightarrow \psi(v) \Leftrightarrow \forall T' \in Alt(?x\phi(x,v)): M, T \cap T' \models \psi(v)$

However, consider $T^{\nu} = \{v_b\}$. Note that $M, \emptyset \models \psi(\nu)$.

²Conditional antecedents are typically taken to be consistent with the context set (Stalnaker 1976, Gillies 2004).

Non-Empty Requirement

Whoever comes to the talk, I should present well.

 $M,T \models ?x\phi(x,v) \Rightarrow \psi(v) \Leftrightarrow \forall T' \in Alt(?x\phi(x,v)): M, T \cap T' \models \psi(v)$

However, consider $T^{\nu} = \{v_b\}$. Note that $M, \emptyset \models \psi(\nu)$.

We thus require that all alternatives in the antecedent intersect with the initial team $T: T \cap T' \neq \emptyset$.²

 $M, T \models ?x\phi(x, v) \Rightarrow \psi(v) \Leftrightarrow \forall T' \in Alt(?x\phi(x, v)): M, T \cap T' \models \psi(v) \text{ and } T \cap T' \neq \emptyset.$

²Conditional antecedents are typically taken to be consistent with the context set (Stalnaker 1976, Gillies 2004).

Unconditionals and variation

(17) UNCONDITIONAL

Wie dan ook comes to the talk, I should present well. Whoever comes to the talk, I should present well.

 $M, T \models (?x\phi(x, v)) \Rightarrow \psi(v) \Leftrightarrow \forall T' \in Alt(?x\phi(x, v)) : M, T \cap T' \models \psi(v) \text{ and } T \cap T' \neq \emptyset.$

Unconditionals and variation

(17) UNCONDITIONAL

Wie dan ook comes to the talk, I should present well. Whoever comes to the talk, I should present well.

$$\begin{split} M,T &\models (?x\phi(x,v)) \Rightarrow \psi(v) \Leftrightarrow \forall T' \in Alt(?x\phi(x,v)) : M, T \cap T' \models \\ \psi(v) \text{ and } T \cap T' \neq \emptyset. \end{split}$$

This non-empty requirement gives us that the following must hold in the initial team T:

$$M, T \models \exists_{s} x(\phi(x, v) \land VAR_{|D|}(\emptyset, x))$$

In other words, an unconditional is felicitous if we are in a situation where any individual might satisfy the antecedent.

We classify the $VAR_{|D|}(\emptyset, x)$ condition as a form of **'pragmatic' inference**, as it follows from the non-empty requirement operative in the unconditional.

Appositives

Appositives contribute to **non-at-issue** dimension of semantic meaning:

- (18) John, the postman, walks.
 - a. AT-ISSUE: W(j)
 - b. NON-AT-ISSUE:: P(j)

Appositives

Appositives contribute to **non-at-issue** dimension of semantic meaning:

- (18) John, the postman, walks.
 - a. AT-ISSUE: W(j)
 - b. NON-AT-ISSUE:: P(j)

In the diachronic data, we find similar appositive constructions:

- (19) 'REFERENTIAL APPOSITIVE' John, wie dan ook, passed the exam.
 Ignorance: John passed the exam and the speaker does not know who John is.
- (20) 'NON-REFERENTIAL APPOSITIVE'
 A student, wie dan ook, can pass the exam.
 <u>Free Choice:</u> Any student can pass the exam.

[Potts 2005; Schlenker 2010; Wang, Reese, and McCready 2005]

Proper Names

Proper names refer to the same individual in a particular epistemic possibility of the speaker: dep(v, j) holds for any name j.

But the value of proper names may **differ across epistemic possibilities**.

(21) a. John passed the exam.

b. P(j, v)

v	j
v_1	d_1
v_2	d_2
v_3	d_2
v_4	d_3

Appositives and Proper Names

Proposal: the variation condition $VAR_{|D|}(\emptyset, x)$ we discussed for the unconditional now represents the contribution of the appositive at a non-at-issue level:

- (22) John, wie dan ook, passed the exam.
 - a. At issue: P(j, v)
 - b. <u>Non at-issue</u>: $VAR_{|D|}(\emptyset, j)$

v	j
v_1	d_1
v_2	d_2
v_n	d_n

Appositives and non-referential expressions

(23) A student, wie dan ook, can pass the exam.

- a. At issue: $\exists_l w \exists_s x \phi(x, w)$
- b. <u>Non at-issue</u>: $VAR_{|D|}(\emptyset, x)$

			_						
v	w	x	-	v	w	x	v	w	x
v_1	w_1	d_1	-	v_1	w_1	d_1	v_1	w_1	d_1
v_2	w_2	d_2		v_1			v_1	w_2	d_2
				v_2			v_1		
v_n	w_n	d_n		v_2	w_n	d_n	v_1	w_n	d_n

(a) corresponds to a specific use of total ignorance, while (c) is the non-specific narrow-scope reading conveying free choice.

Strengthening of $VAR_{|D|}(\emptyset, x)$ to $VAR_{|D|}(v, x)$:

- Disambiguation: $VAR_{|D|}(v, x)$ only compatible with narrow-scope.
- 2 Conventionalization of the strongest possible meaning.

Appositives and non-referential expressions

(23) A student, *wie dan ook*, can pass the exam.

- a. At issue: $\exists_l w \exists_s x \phi(x, w)$
- b. Non at-issue: $VAR_{|D|}(\emptyset, x)$

			_						
v	w	x	-	v	w	x	v	w	x
v_1	w_1	d_1	-	v_1	w_1	d_1	v_1	w_1	d_1
v_2	w_2	d_2		v_1			v_1	w_2	d_2
				v_2			v_1		
v_n	w_n	d_n		v_2	w_n	d_n	v_1	w_n	d_n

(a) corresponds to a specific use of total ignorance, while (c) is the non-specific narrow-scope reading conveying free choice.

Strengthening of $VAR_{|D|}(\emptyset, x)$ to $VAR_{|D|}(v, x)$:

1 Disambiguation: $VAR_{|D|}(v, x)$ only compatible with narrow-scope.

2 Conventionalization of the strongest possible meaning. Non-specific uses are only possible in (modal) embedded contexts. 29/37

Merging at-issue and non-at-issue

We merge AT-ISSUE and NON-AT-ISSUE semantic content to preserve the anaphoric relations between the two dimensions. 3

$$\begin{split} T &\models merge(\phi_{\text{at-issue}} \land \phi_{\text{non-at-issue}}) \text{ iff} \\ T &\models \phi_{\text{at-issue}} \text{ and there is a } T' \text{ s.t. } T[\phi_{\text{at-issue}}]T' \text{ and } T' &\models \phi_{\text{non-at-issue}} \end{split}$$

(24) A student, wie dan ook, can pass the exam.

- a. At issue: $\exists_l w \exists_s x(\phi(x, w))$
- b. <u>Non at-issue</u>: $VAR_{|D|}(v, x)$

v	v	w	x		v	w	x
v_1	 v_1	w_1	d_1	. →	v_1	w_1	d_1
v_n	v_n	w_n	d_n		v_n	w_n	d_n

³See Appendix B for a Dynamic Team Semantics which behaves accordingly.

Free Choice

In the last phase, the strengthened $VAR_{|D|}(v, x)$ is integrated into the semantics of the indefinite.

(25) a. Wie dan ook can pass the exam.

b. $\exists_l w \exists_s x(\phi(x, v) \land VAR_{|D|}(v, x))$

v	w	x
	÷	d_1
v_1	÷	d_2
	÷	
	÷	d_n

Outline

- 1. Indefinites and FC
- 2. Grammaticalization
- 3. Team Semantics
- 4. Formal Diachronic Analysis
- 5. Conclusion

Trajectory of Semantic Change

Our proposal suggests the following trajectory of semantic change

- Pragmatic' inference $VAR_{|D|}(\emptyset, x)$
- **2** NON-AT-ISSUE meaning $VAR_{|D|}(\emptyset, x)$
- Strengthening of NON-AT-ISSUE meaning to $VAR_{|D|}(v, x)$
- **4** AT-ISSUE meaning $VAR_{|D|}(v, x)$

NON-AT-ISSUE content in (2) and (3) as a **conventionalization** bridge for the integration of an originally pragmatic inference into at-issue semantic content.

Conclusion

THANK YOU!

Conclusion

THANK YOU!

- 3.1 Team Semantics
- 3.2 Teams as information states
- 3.3 Aloni & Degano (2022)
- 3.4 Generalized Variation
- 3.5 Some Facts
- 4. Formal Diachronic Analysis
 - 4.1 General Plan
 - 4.2 Unconditionals
 - 4.3 Questions and Team Semantics

- 4.4 Unconditionals and variation
- 4.5 Appositives
- 4.6 Proper Names
- 4.7 Appositives and Proper Names
- 4.8 Appositives and non-referential expressions
- 4.9 Merging at-issue and non-at-issue
- 4.10 Free Choice
- 5. Conclusion
 - 5.1 Trajectory of Semantic Change

1. Indefinites and FC

- 1.1 Indefinite Pronouns
- 1.2 Indefinites and Free Choice

2. Grammaticalization

- 2.1 Grammaticalization Patterns
- 2.2 Unconditional phase
- 2.3 Appositive phase
- 2.4 Indefinite phase
- 3. Team Semantics

Semantic Clauses

$M, T \models P(x_1, \dots, x_n)$	⇔	$\forall j \in T : \langle j(x_1), \dots, j(x_n) \rangle \in I(P^n)$
$M,T\models\phi\wedge\psi$	⇔	$M,T\models\phi$ and $M,T\models\psi$
$M,T \models \phi \lor \psi$	⇔	$T = T_1 \cup T_2$ for teams T_1 and T_2 s.t. $M, T_1 \models \phi$ and $M, T_2 \models \psi$
$M,T \models \forall z \phi$	⇔	$M, T[z] \models \phi$, where $T[z] = \{i[d/z] : i \in T \text{ and } d \in D\}$
$M, T \models \exists_{strict} z \phi$	⇔	there is a function $h : T \rightarrow D$ s.t. $M, T[h/z] \models \phi$, where $T[h/z] = \{i[h(i)/z] : i \in T\}$
$M,T \models \exists_{lax} z \phi$	⇔	there is a function $f : T \to \mathcal{D}(D) \setminus \{\emptyset\}$ s.t. $M, T[f/z] \models \phi$, where $T[f/z] = \{i[d/z] : i \in T \text{ and } d \in f(i)\}$
$M,T\models dep(\vec{z},u)$	⇔	for all $i, j \in T$: $i(\vec{z}) = j(\vec{z}) \Rightarrow i(u) = j(u)$
$M,T \models var(\vec{z},u)$	⇔	there is $i, j \in T$: $i(\vec{z}) = j(\vec{z}) \& i(u) \neq j(u)$
$M,T \models var(\vec{z},u)$	⇔	there is $i, j \in T$: $i(\vec{z}) = j(\vec{z}) \& i(u) \neq j(u)$
$M, T \models VAR_n(\vec{z}, u)$	⇔	for all $i \in T : \{j(u) : j \in T \text{ and } i(\vec{z}) = j(\vec{z})\} \ge j$

35 / 37

A dynamic team semantics

$\langle T, T' \rangle \in \llbracket P(t_1 \dots t_n) \rrbracket_M$	iff	$T = T'$ and for all $i \in T, \langle i(t_1), \dots, i(t_n) \rangle \in I(P)$
$\langle T,T'\rangle \in [\![dep(\vec{z},u)]]\!]_M$	iff	$T = T'$ and for all $i, j \in T : i(\vec{z}) = j(\vec{z}) \Rightarrow i(u) = j(u)$
$\langle T, T' \rangle \in \llbracket \phi \wedge \psi \rrbracket_M$	iff	$\exists X : \langle T, X \rangle \in \llbracket \phi \rrbracket_M \text{ and } \langle X, T' \rangle \in \llbracket \psi \rrbracket_M$
$\langle T, T' \rangle \in \llbracket \phi \lor \psi \rrbracket_M$	iff	$ \exists T_1, T_2, T'_1, T'_2 \text{ s.t. } T = T_1 \cup T_2, T' = T'_1 \cup T'_2, \langle T_1, T'_1 \rangle \in \llbracket \phi \rrbracket_M \text{ and } \langle T_2, T'_2 \rangle \in \llbracket \psi \rrbracket_M $
$\langle T, T' \rangle \in [\![\exists_s z \phi]\!]_M$	iff	$\exists X : T[z_s] T' \text{ and } \langle T, T' \rangle \in \llbracket \phi \rrbracket_M$
$\langle T, T' \rangle \in [\![\exists_l z \ \phi]\!]_M$	iff	$\exists X : T[z_l] T' \text{ and } \langle T, T' \rangle \in \llbracket \phi \rrbracket_M$
$\langle T, T' \rangle \in [\![\forall z \ \phi]\!]_M$	iff	$T = T'$ and $\exists X, X' : T[z_u]X$ and $\langle X, X' \rangle \in [\![\phi]\!]_M$

Negation can be defined as the dual negation.

(Alternative notation for $\langle T, T' \rangle \in \llbracket \phi \rrbracket$: $T[\phi]T'$)

A dynamic team semantics with post-suppositions We can treat dependency atoms as post-suppositions (of

existential sentences).

 $T[\phi_{\psi}]^{+}T'$ iff $T[\phi]^{+}T'$ if $\exists X : T'[\psi]^{+}X$; undefined otherwise

 $T[\phi_{\psi}]^{-}T'$ iff $T[\phi]^{-}T'$ if $\exists X : T'[\psi]^{+}X$; undefined otherwise

This also allows us to capture the merging of AT-ISSUE and NON-AT-ISSUE content and the projection behaviour of non-at-issue content under negation:

 $\langle \phi_{at-issue}, \psi_{non-at-issue} \rangle$ iff $\phi_{at-issue_{(\psi_{non-at-issue})}}$

$$\begin{split} T[\phi(x,\nu)_{VAR(\nu,x)}]^+T' & \text{iff} \quad T[\phi(x,\nu)]^+T', \text{ if } \exists X:X=T' \text{ and for all } i \in X: |\{j(x):j\in X \text{ and } i(\nu)=j(\nu)\}| = |D| \end{split}$$

iff
$$T[\phi(x, v)]^+ T'$$
, if for all $i \in T' : |\{j(x) : j \in T' \text{ and } i(v) = j(v)\}| = |D|$

Aloni, Maria (2007). "Free choice and exhaustification: an account of subtrigging effects". In: *Proceedings of Sinn und Bedeutung*. Vol. 11, pp. 16–30.

Aloni, Maria and Marco Degano (2022). "(Non-)specificity across languages: constancy, variation, v-variation". In: Semantic and Linguistic Theory (SALT) 32. URL: HTTPS://DOI.ORG/10.3765/SALT.V110.5337.

Chierchia, Gennaro (2013). Logic in grammar: Polarity, free choice, and intervention. OUP Oxford. DOI:

10.1093/ACPROF:0s0/9780199697977.001.0001.

- Ciardelli, Ivano (2016). "Lifting conditionals to inquisitive semantics". In: Semantics and Linguistic Theory. Vol. 26, pp. 732–752. DOI: 10.3765/SALT.V2610.3811.
- (2022). Inquisitive Logic: Consequence and Inference in the Realm of Questions. Springer Nature.
- Ciardelli, Ivano, Jeroen Groenendijk, and Floris Roelofsen (2018). *Inquisitive semantics*. Oxford University Press. DOI: 10.1093/050/9780198814788.001.0001.

Company Company, Concepción and Julia Pozas Loyo (2006). "Los indefinidos compuestos y los pronombres genérico-impersonales omne y uno". In: *Sintaxis histórica de la lengua española.* Fondo de Cultura Económica, pp. 1073–1222.

Dayal, Veneeta (1998). "*Any* as inherently modal". In: *Linguistics and Philosophy* 21.5, pp. 433–476. DOI: 10.1023/A:1005494000753.

- Degano, Marco (2022). Meaning Interfaces in Language Change: Free Choice, Unconditionals and Appositives. Formal Diachronic Semantics 7.
- Degano, Marco and Maria Aloni (2021). "Indefinites and free choice". In: Natural Language & Linguistic Theory 40.2, pp. 447–484.
- Galliani, Pietro (2012). "The dynamics of imperfect information". PhD thesis. ILLC, University of Amsterdam. URL:

HTTPS://HDL.HANDLE.NET/11245/1.377053.

- Giannakidou, Anastasia (2001). "The meaning of free choice". In: *Linguistics* and *Philosophy* 24.6, pp. 659–735. DOI: 10.1023/A:1012758115458.
- Halm, Tamás (2021). Want, unconditionals, ever-free-relatives and scalar particles: the sources of free-choice items in Hungarian. Formal Diachronic Semantics 6, University of Cologne.

Haspelmath, Martin (1997). Indefinite Pronouns. Oxford University Press. URL: https://doi.org/10.1093/oso/9780198235606.001.0001.

Hodges, Wilfrid (1997). "Compositional semantics for a language of imperfect information". In: Logic Journal of the IGPL 5.4, pp. 539–563. URL: https://doi.org/10.1093/jigPal/5.4.539.

Jayez, Jacques and Lucia M Tovena (2005). "Free choiceness and non-individuation". In: *Linguistics and Philosophy* 28.1, pp. 1–71.

Menéndez-Benito, Paula (2005). "The grammar of choice". PhD thesis. University of Massachusetts Amherst Amherst, MA. URL: https://scholarworks.umass.edu/dissertations/AAI3193926/.

Pescarini, Sandrine (2010). "N'importe qu-: diachronie et interprétation". In: Langue française 2, pp. 109–131.

Potts, Christopher (2005). The logic of conventional implicatures. 7. Oxford University Press. DOI: 10.1093/ACPROF:0S0/9780199273829.001.0001.
Rawlins, Kyle (2008). "(Un) conditionals: An investigation in the syntax and semantics of conditional structures". PhD thesis. University of California, Santa Cruz.

Schlenker, Philippe (2010). "Supplements within a Unidimensional Semantics I: Scope". In: Logic, Language and Meaning. Ed. by Maria Aloni et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 74–83.

- Väänänen, Jouko (2007). Dependence Logic: A New Approach to Independence Friendly Logic. Vol. 70. Cambridge University Press. URL: https://doi.org/10.1017/CB09780511611193.
- de Vos, Machteld (2010). Wh dan ook: The synchronic and diachronic study of the grammaticalization of a Dutch indefinite. BA thesis, University of Amsterdam.
- Väänänen, Jouko (2022). "An atom's worth of anonymity". In: Logic Journal of the IGPL. URL: https://doi.org/10.1093/jigPal/jzac074.
- Wang, Linton, Brian Reese, and Eric McCready (2005). "The projection problem of nominal appositives". In: *Snippets* 10.1, pp. 13–14.