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Abstract

Indefinites are known to give rise to different scopal (specific vs. non-
specific) and epistemic (known vs. unknown) uses. Farkas and Brasoveanu
[2020] explained these specificity distinctions in terms of stability vs. vari-
ability in value assignments of the variable introduced by the indefinite.
Typological research [Haspelmath, 1997] showed that indefinites have dif-
ferent functional distributions with respect to these uses. In this work, we
present a formal framework where Farkas and Brasoveanu [2020]’s ideas are
rigorously formalized. We develop a two-sorted team semantics which inte-
grates both scope and epistemic effects. We apply the framework to explain
typological variety of indefinites, showing that only lexicalized indefinites
have convex meanings in our system [Gardenfors, 2014, Steinert-Threlkeld
et al., 2023]. We account for the restricted distribution and licensing con-
ditions of different indefinites, and some diachronic developments of in-
definite forms. We also focus on a particular class of indefinites, called
epistemic indefinites [Alonso-Ovalle and Menéndez-Benito, 2017].

1 Introduction
Indefinites display a great variety in form and meaning across languages. This
paper deals with two core phenomena in the domain of indefinite pronouns
and determiners, and it examines them from a cross-linguistic viewpoint. First,
specific and non-specific interpretations. Example (1) is an illustration:

(1) Ali wants to buy a mug.
a. Specific: There is a specific mug which Ali wants to buy.
b. Non-specific: Ali wants to buy a mug, any mug would do.

The ambiguity in (1) reflects also the scope behaviour of the indefinite with
respect to the attitude verb want: a mug receives wide scope in (1a) and narrow-
scope in (1b).1

Second, indefinites are known to give rise to different epistemic inferences
with respect to the identity of the referent:2

1[Fodor and Sag, 1982, Farkas, 1981, Reinhart, 1997, Kratzer, 1998, Winter, 1997, Schwarzschild,
2002, Brasoveanu and Farkas, 2011, Charlow, 2020].

2[Fodor and Sag, 1982, Farkas, 1994, Kamp and Bende-Farkas, 2019].

1



(2) A linguist participated in the event.
a. Known: The speaker knows which linguist participated in the event.
b. Unknown: The speaker doesn’t know which linguist participated in

the event.

In a recent introductory article Farkas and Brasoveanu [2020] examined these
distinctions between scopal and epistemic specificity.3 They argued that these
notions are related to stability versus variability of reference across different
assignments of the variable introduced by the indefinite. Their work ended
with two challenges. First, new theoretical tools need to be developed or refined
to rigorously study these differences in stability and variability. Second, the
relevant linguistic phenomena underlying these distinctions need to be carefully
investigated.

For the first challenge, we develop a novel formal framework using tools
from team semantics and dependence logic.4 We show that our account cap-
tures both specific vs. non-specific and known vs. unknown uses. For the
second challenge, languages mark these specificity and epistemic distinctions
in the lexical meaning of particular indefinite forms. We will refer to such in-
definites as marked indefinites. To make our discussion concrete, and typological
comparisons possible, we rely on the work of Haspelmath [1997], who exam-
ined the functional distributions of indefinites in 40 languages. We show that
our account captures the typological variety of marked indefinites within and
across languages, explaining also why certain types of indefinites are unattested
as a failure of convexity. We further account for the restricted distributions and
licensing conditions of these indefinites. Our framework predicts also some
diachronic developments of indefinites in terms of semantic weakening.

This paper is structured as follows. Section 2 outlines the core data of our in-
vestigation and how languages mark specificity distinctions cross-linguistically.
Section 3 introduces our formal framework with the relevant technical ma-
chinery and background notions. Section 4 shows how this framework can
be applied to model marked indefinites, together with several properties and
phenomena associated with them. In particular, we focus on the typologi-
cal variety of indefinites (Section 4.3), licensing restrictions (Section 4.4), the
diachronic development of indefinites (Section 4.8) and some remarks on func-
tional specificity (Section 4.9). Section 4.5 extends our framework with negation
and examines the behavior of marked indefinites under negation. Section 4.6
extends our framework with modality and its interaction with indefinites. Sec-
tion 4.7 is dedicated to epistemic indefinites, a well known class of indefinites
in the semantic literature. Section 5 concludes.

3In their work, they also introduced the notion of partitive specificity, which we do not address
here.

4[Hodges, 1997, Väänänen, 2007a,b, Galliani, 2012, 2021].
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2 Indefinites across languages
In Section 1, we examined different specificity and epistemic readings associ-
ated with indefinites. Example (3) illustrates these contrasts for English someone:

(3) a. Specific known (sk): Someone called. I know who.
b. Specific unknown (su): Someone called. I do not know who.
c. Non-specific (ns): John needs to find someone for the job.

Cross-linguistically, languages developed lexicalized form with restricted
distributions with respect to the uses in (3). For instance, German irgend- is
incompatible with sk, as the infelicitous continuation in (4) shows:

(4) Irgendein
some

Student
student

hat
has

angerufen.
called.

#Rat
guess

mal wer?
who?

‘Some (unknown) student called. #Guess who?’
(from Haspelmath [1997])

Another relevant example is Russian -nibud’, which is not allowed in episodic
contexts and can only be interpreted non-specifically:

(5) *Ivan
Ivan

včera
yesterday

kupil
bought

kakuju-nibud’
which-indef.

knigu.
book.

‘Ivan bought some [non-specific] book yesterday.’

Haspelmath [1997] examined indefinites’ systems in 40 languages and de-
veloped a functional map of indefinites with nine main functions.5 Figure 1
displays a semantic map for the German indefinite irgend-, where the colored
area indicates the possible functions available for irgend-.

Specific
Known

Specific
Unknown

Irrealis
Non-Specific

Question

Conditional

Indirect
Negation

Direct
Negation

Comparative Free
Choice

Figure 1: Haspelmath’s map for German irgend-

5Haspelmath [1997] restricted his analysis to indefinite pronouns and determiners formed with
indefinite markers (e.g., the Englishsome- or any-) which occur in a series (e.g., some-thing, some-where,
. . . ). This excludes from our work expressions such as a certain, which however have a specific-like
flavour. An interesting research question is to determine if the behaviour of indefinites marked
for specific uses parallels entirely specificity markers like certain in combination with indefinite
articles.

3



type functions example
sk su ns

(i) unmarked ✓ ✓ ✓ Italian qualcuno
(ii) specific ✓ ✓ ✗ Georgian -ghats
(iii) non-specific ✗ ✗ ✓ Russian -nibud’
(iv) epistemic ✗ ✓ ✓ German irgend-
(v) specific known ✓ ✗ ✗ Russian koe-
(vi) SK + NS ✓ ✗ ✓ unattested
(vii) specific unknown ✗ ✓ ✗ Kannada -oo

Table 1: Possible Types of Indefinites

As said, in this work we will mainly focus on the 3 functions specific known
(sk), specific unknown (su) and non-specific (ns) on the left part of the map.

Given the importance of the data considered by Haspelmath [1997] for
our work, some words on the classification criteria used in his typological
research are in order, especially for the specific vs. non-specific dimension.
Indefinites with specific uses presuppose the existence of their referent (i.e., they
can be paraphrased with a there-insertion construction). They can introduce
discourse referents, as they allow continuations with appropriate pronominal
expressions. On the other hand, non-specific indefinites are ungrammatical in
episodic contexts and need a licensing operator, such as a modal or a bona fide
quantifier. Note that under this analysis of specificity, specific indefinites admit
only wide-scope readings, and thus the notion of specificity considered here
amounts to scopal specificity. We will return to this issue in Section 4.9.

Combinations of these three functions lead to 7 possible indefinite types,
summarized in Table 1 together with a relevant example.

Unmarked indefinites don’t have any restriction with respect to these func-
tions; specific indefinites admit only specific uses (sk and su); non-specific in-
definites admit only ns uses; and so-called epistemic indefinites allow for both
su and ns uses. The last two types deserve some remarks. Type (vi), encoding
sk and ns but not su, is unattested in the data collected by Haspelmath [1997].
Type (vii), admitting only su uses, is very infrequent: out of the 40 languages
that Haspelmath [1997] examined, only 1 has such indefinite, Kannada.6

Table 2 displays some within-language distinctions. Generalizations are
difficult to make, given the limited amount of data.7 Nevertheless, in the data
collected by Haspelmath [1997], we see that overall the combination specific +

6A Dravidian language spoken mainly in Karnataka in south-western India. Kannada is a
determinerless language and, as such, bare nouns are ambiguous between definite and indefinite
uses. It might be possible that this facilitated the development of a specific form with unknown
uses, since the definite already encodes familiarity with the referent. For more on the uses of
Kannada bare nouns, see Srinivas and Rawlins [2021] and for the Kannada indefinite system in
general, Bhat [2011].

7Moreover, we also note that there are equivalent expression (e.g., a specific) which, albeit not
being indefinites, have meanings similar to some of the marked indefinites we consider here.

4



language indefinite functions typesk su ns
Italian un qualche ✗ ✓ ✓ epistemic

qualcuno ✓ ✓ ✓ unmarked
Russian koe- ✓ ✗ ✗ specific known

-to ✗ ✓ ✓ epistemic
-nibud’ ✗ ✗ ✓ non-specific

Japanese -ka ✓ ✓ ✓ unmarked
Turkish bir ✓ ✓ ✓ unmarked

herhangi ✗ ✓ ✓ epistemic
German etwas ✓ ✓ ✓ unmarked

irgend ✗ ✓ ✓ epistemic
Georgian -ghats ✓ ✓ ✗ specific

-me ✗ ✗ ✓ non-specific
Ossetic -dær ✓ ✓ ✗ specific

is- ✗ ✗ ✓ non-specific
Kazakh bir ✓ ✓ ✓ unmarked

älde ✓ ✓ ✗ specific
Kannada -oo ✗ ✓ ✗ specific unknown

-aadaruu ✗ ✗ ✓ non-specific

Table 2: Marked indefinites across languages

non-specific is very common. And also the epistemic type is quite widespread.
An important question, which will address in the coming sections, is to deter-
mine why such indefinites are so widespread. It is also quite typical that if a
language has an indefinite marked only for specific uses, then indefinites of the
epistemic kind are absent. In the case of Russian, we observe that there are
two marked indefinites8 to express ns: the epistemic -to, which also admits su
uses; and the non-specific -nibud’, which only admits non-specific uses. How-
ever, Russian speakers tend to select -nibud’ for ns and -to for su. Why then -to
maintained its ns uses and did not become a specific unknown indefinite?

In the next section, we will develop a formal framework which will help
us to address these questions, together with other several properties and puz-
zles associated with marked indefinites. In particular, we will account for the
variety of marked indefinites in Table 1, including a principled explanation
of the cross-linguistic absence of the sk + ns combination. (Section 4.3); the
restricted distribution and licensing conditions of non-specific indefinites (Sec-
tion 4.4); the interaction with negation (Section 4.5) and modality (Section 4.6);
the meaning of epistemic indefinites (Section 4.7); the diachronic pathway from
non-specific to epistemic (Section 4.8); and how marked indefinites interact
with scope (Section 4.10).

8Russian has also other indefinites which might admit non-specific uses. We do not include
them here, as they are commonly considered to be tied to different registers.
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3 Two-sorted Team Semantics
Traditionally, formulas are interpreted with respect to a single evaluation point.
In team semantics, formulas are interpreted with respect to sets of points, rather
than single ones. These evaluations points can be valuations (as in propositional
team logic, Yang and Väänänen [2017]), assignments (as in first-order team
semantics, Galliani [2021], Lück [2020]) or possible worlds (as in team-based
modal logic, Aloni [2022], Lück [2020]). This set of evaluations is usually called
a team.

As a simple example, let us just consider a propositional case described in
Table 3. The team 𝑍 = {𝑖 , 𝑗} is composed of two valuations (𝑖 and 𝑗), assigning
truth values to propositional atoms. As we will see, 𝑍 does not make 𝑝 true,
since 𝑝 is not satisfied in all assignments of the team, but it makes 𝑞 true, as 𝑞
is satisfied in both 𝑖 and 𝑗.

𝑝 𝑞 𝑍

1 1 𝑖
0 1 𝑗

Table 3: Simple Team over propositions

In what follows, we will work with a two-sorted first-order framework, with
two sorts of entities, individuals in 𝐷 and possible worlds in 𝑊 , with variables
ranging over each set. We define the language of our logical system as follows.
In the rest of the section, we will clarify the underlying idea behind a two-sorted
team semantics and the language defined below.

Definition 1 (Language) Given a first-order signature 𝜎 (composed of individual
constants 𝑐 ∈ 𝒞, and predicates 𝑃𝑛 ∈ 𝒫𝑛 with 𝑛 ∈ N), and individual variables
𝑧𝑑 ∈ 𝒵𝑑 and world variables 𝑧𝑤 ∈ 𝒵𝑤 , the terms and formulas of our language are
defined as follows:9

𝑡 ::= 𝑐 |𝑧𝑑 |𝑧𝑤
𝜙 ::= 𝑃(®𝑡) | ¬𝑃(®𝑡) | 𝑡 = 𝑡′ |𝜙∨𝜓 |𝜙∧𝜓 | ∃𝑠𝑡𝑟𝑖𝑐𝑡𝑧𝜙 | ∃𝑙𝑎𝑥𝑧𝜙 | ∀𝑧𝜙 | 𝑑𝑒𝑝(®𝑧, 𝑧) | 𝑣𝑎𝑟(®𝑧, 𝑧)

Definition 2 (Two-sorted model) A two-sorted model is a triple 𝑀 = ⟨𝐷,𝑊, 𝐼⟩
composed of a domain of individuals 𝐷𝑜𝑚𝑑(𝑀) = 𝐷, a domain of worlds 𝐷𝑜𝑚𝑤(𝑀) =
𝑊 , and an interpretation function 𝐼 assigning an element of 𝐷 to every individual
constant symbol and sets of 𝑛-tuples constructed from𝑊 and𝐷 to every 𝑛-ary predicate
symbol.

A two-sorted first-order team is just a set of assignments mapping world
variables to elements of 𝑊 and individual variables to elements of 𝐷. We first
define a variable assignment and then a team.10

9®𝑡 stands for an arbitrary sequence 𝑡1 , . . . , 𝑡𝑛 .
10To keep the definitions general, we indicate the sort in the subscript. 𝑧𝑑 and 𝑧𝑤 will be individual

and world variables respectively. Similarly, 𝑒𝑑 will be an element of 𝐷 and 𝑒𝑤 an element of 𝑊 .
Later, we will use more conventional labels.
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Definition 3 (Variable Assignments) Given a two-sorted first-order model 𝑀 =

⟨𝐷,𝑊, 𝐼⟩ and a set of variables 𝑍 = 𝑍𝑑 ∪ 𝑍𝑤 , an assignment 𝑖 is a function from 𝑍 to
𝐷 ∪𝑊 , s.t. 𝑖(𝑧) ∈ 𝐷 if 𝑧 ∈ 𝑍𝑑 and 𝑖(𝑧) ∈ 𝑊 if 𝑧 ∈ 𝑍𝑤 . For any variable 𝑧∗ and any
element 𝑒∗ with ∗ ∈ {𝑑, 𝑤}, we write 𝑖[𝑒∗/𝑧∗] for the assignment function with domain
𝑍 ∪ {𝑧∗} s.t. for all variable symbols 𝑙 ∈ 𝑍 ∪ {𝑧∗}:

𝑖[𝑒∗/𝑧∗](𝑙) =
{
𝑒∗ if 𝑙 = 𝑧∗
𝑖(𝑙) otherwise

For every assignment 𝑖, every sequence ®𝑒 = 𝑒1 , . . . , 𝑒𝑛 and ®𝑧 = 𝑧1 , . . . , 𝑧𝑛 , we
write 𝑖[®𝑒/®𝑧] as an abbreviation for 𝑖[𝑒1/𝑧1] . . . [𝑒𝑛/𝑧𝑛].

A team in our framework is, as anticipated, a set of variable assignments:

Definition 4 (Team) Given a two-sorted first-order model 𝑀 = ⟨𝐷,𝑊, 𝐼⟩ and a set
of variables 𝑍 = 𝑍𝑑 ∪ 𝑍𝑤 , a team 𝑇 over 𝑀 with domain 𝐷𝑜𝑚(𝑇) = 𝑍 is a set of
assignments 𝑖 with domain 𝑍.

𝑇 𝑣 𝑥

𝑖1 𝑣1 𝑑1
𝑖2 𝑣2 𝑑2

Table 4: Example of a two-sorted first order team 𝑇 = {𝑖1 , 𝑖2} with domain
𝑍 = {𝑣, 𝑥}, and 𝐷 = {𝑑1 , 𝑑2 , . . . }, 𝑊 = {𝑣1 , 𝑣2 , . . . }.

3.1 Teams as information states
Teams represent information states of speakers. In initial teams only factual
information is represented, encoded by a designated variable 𝑣 ∈ 𝑍𝑤 .

Definition 5 (Initial Team) A team 𝑇 is initial iff 𝐷𝑜𝑚(𝑇) = {𝑣}.

The possible values of 𝑣 in a team represent different ways the world might
be (epistemic possibilities). Intuitively, a team where 𝑣 receives only one value
is of maximal information.

Definition 6 (Team of Maximal Information) A team 𝑇 is of maximal informa-
tion iff 𝑖(𝑣) = 𝑗(𝑣) for all 𝑖 , 𝑗 ∈ 𝑇.

In initial teams, only factual information is present. Then, operations of
assignment extension add discourse information to the team. This leads to
defining a sentence as felicitous if there is an initial team which supports it:

Definition 7 (Felicitous sentence) A sentence is felicitous/grammatical if there is
an initial team which supports it.
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In the team represented in Table 5, the first row indicates the variables
present in the team and the rows below the values assigned by the assignments
in the team. The first column in yellow encodes factual information and conveys
that the epistemic possibilities the speaker entertains are 𝑣1, 𝑣2 and up to 𝑣𝑛 .
Discourse information is then added by operations of assignment extensions,
which can introduce individual or world variables. As said, teams encode the
information state of the speaker. For instance, in Table 5 the speaker is certain
about - or knows - the value of 𝑥, since 𝑥 is constant across all her epistemic
possibilities. However, the speaker does not know the value of 𝑦. World
variables, like 𝑤, are introduced to model modals or attitudes verbs, as we will
see in the next sections.

𝑣 𝑥 𝑤 𝑦 . . .

𝑣1 𝑎 𝑤1 𝑏1 . . .

𝑣2 𝑎 𝑤2 𝑏2 . . .

. . . 𝑎 . . . . . . . . .

𝑣𝑛 𝑎 𝑤𝑛 𝑏𝑛 . . .

Table 5: Team as information state (initial team in yellow)

3.2 Assignment extensions
Our assignment extensions are based on similar operations in dynamic and
team semantics [Groenendĳk and Stokhof, 1991, Dekker, 1993, Aloni, 2001,
Väänänen, 2007b, Galliani, 2012]:

Definition 8 (Universal Extension) Given a model 𝑀 = ⟨𝐷,𝑊, 𝐼⟩, a team 𝑇 and
a variable 𝑧∗ with ∗ ∈ {𝑑, 𝑤}, the universal extension of 𝑇 with 𝑧∗, 𝑇[𝑧∗] is defined as
follows:

𝑇[𝑧∗] = {𝑖[𝑒∗/𝑧∗] : 𝑖 ∈ 𝑇 and 𝑒∗ ∈ 𝐷𝑜𝑚∗(𝑀)}

Universal extensions consider all assignments that differ from the ones in
𝑇 only with respect to the value of 𝑧∗. Table 6(b) is an example, assuming the
initial team in Table 6(a) and a domain of two individuals. Note that universal
extensions are unique.

Definition 9 (Strict Functional Extension) Given a model 𝑀 = ⟨𝐷,𝑊, 𝐼⟩, a team
𝑇 and a variable 𝑧∗ with ∗ ∈ {𝑑, 𝑤}, the strict functional extension of 𝑇 with 𝑧∗,
𝑇[ 𝑓𝑠/𝑧∗] is defined as follows:

𝑇[ 𝑓𝑠/𝑧∗] = {𝑖[ 𝑓𝑠(𝑖)/𝑧∗] : 𝑖 ∈ 𝑇}, for some strict function 𝑓𝑠 : 𝑇 → 𝐷𝑜𝑚∗(𝑀)

Strict functional extensions assign only one value to the variable for each
assignment in the original team 𝑇. Table 6(c) shows one of the four possi-
ble examples, assuming the initial team in Table 6(a) and a domain of two
individuals.
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Definition 10 (Lax Functional Extension) Given a model 𝑀 = ⟨𝐷,𝑊, 𝐼⟩, a team
𝑇 and a variable 𝑧∗ with ∗ ∈ {𝑑, 𝑤}, the lax functional extension of 𝑇 with 𝑧∗, 𝑇[ 𝑓𝑙/𝑧∗]
is defined as follows:

𝑇[ 𝑓𝑙/𝑧∗] = {𝑖[𝑒∗/𝑧∗] : 𝑖 ∈ 𝑇 and 𝑒∗ ∈ 𝑓𝑙(𝑖)}, for some lax function 𝑓𝑙 : 𝑇 → ℘(𝐷𝑜𝑚∗(𝑀))\{∅}

Lax functional extensions amount to assign one or more values to the vari-
able for each original assignment in𝑇. Table 6(d) shows one of the nine possible
examples, assuming the initial team in Table 6(a) and a domain of two individ-
uals.

(a)

𝑣 𝑇

𝑣1 𝑖1
𝑣2 𝑖2

(b)

𝑣 𝑦 𝑇[𝑦]

𝑣1
𝑑1 𝑖11

𝑑2 𝑖12

𝑣2
𝑑1 𝑖21

𝑑2 𝑖22

(c)

𝑣 𝑦 𝑇[ 𝑓𝑠/𝑦]
𝑣1 𝑑1 𝑖11

𝑣2 𝑑2 𝑖22

(d)

𝑣 𝑦 𝑇[ 𝑓𝑙/𝑦]
𝑣1 𝑑2 𝑖12

𝑣2
𝑑1 𝑖21

𝑑2 𝑖22

Table 6: Initial Team (a), universal 𝑦-extension (b), strict functional 𝑦-extension
(c), and lax functional 𝑦-extension (d), with 𝐷 = {𝑑1 , 𝑑2}

3.3 Dependence and Variation atoms
Team semantics frameworks are often equipped with dependence atoms - ex-
pressions which impose conditions of dependence on the variables’ values
given by the different assignments.[Väänänen, 2007a, Galliani, 2021]. In this
work, we adopt the following two atoms:

Definition 11 (Dependence Atom)
𝑀,𝑇 |= 𝑑𝑒𝑝(®𝑥, 𝑦) ⇔ for all 𝑖 , 𝑗 ∈ 𝑇 : 𝑖(®𝑥) = 𝑗(®𝑥) ⇒ 𝑖(𝑦) = 𝑗(𝑦)

Definition 12 (Variation Atom)
𝑀,𝑇 |= 𝑣𝑎𝑟(®𝑥, 𝑦) ⇔ there is 𝑖 , 𝑗 ∈ 𝑇 : 𝑖(®𝑥) = 𝑗(®𝑥) & 𝑖(𝑦) ≠ 𝑗(𝑦)

The first atom in Definition 11 says that if any two assignments agree on
the value of ®𝑥, they also agree on the value of 𝑦 (i.e. the value of 𝑦 is dependent
on the value of ®𝑥). The variation atom in Definition 12 corresponds to the
metalinguistic negation of the definition of Dependence Atom above, and as
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such it encodes the failure of functional dependence.11 It is valid when there is
at least a pair of assignments for which the value of 𝑦 varies and ®𝑥 is the same.
Table 7 displays a team of three assignments together with some illustrations.

𝑇 𝑥 𝑦 𝑧 𝑙

𝑖 𝑎1 𝑏1 𝑐1 𝑑1
𝑗 𝑎1 𝑏1 𝑐2 𝑑1
𝑘 𝑎3 𝑏2 𝑐3 𝑑1

𝑑𝑒𝑝(𝑥, 𝑦) ✓

𝑑𝑒𝑝(∅, 𝑙) ✓

𝑑𝑒𝑝(𝑥𝑦, 𝑧) ✗

𝑣𝑎𝑟(𝑥, 𝑧) ✓

𝑣𝑎𝑟(∅, 𝑥) ✓

𝑣𝑎𝑟(𝑥, 𝑦) ✗

Table 7: Dependence and Variation atoms - Illustrations

In Table 7, we have that 𝑑𝑒𝑝(𝑥, 𝑦), since for any assignment 𝑖, 𝑗 and 𝑘, the
value of 𝑥 determines the value of 𝑦. But we do not have 𝑑𝑒𝑝(𝑥𝑦, 𝑧) (consider
for example 𝑖 and 𝑗: 𝑖(𝑥𝑦) = 𝑗(𝑥𝑦), but 𝑖(𝑧) ≠ 𝑗(𝑧)). It also holds that 𝑣𝑎𝑟(𝑥, 𝑧)
since 𝑖(𝑥) = 𝑗(𝑥) but 𝑖(𝑧) ≠ 𝑗(𝑧). A special case are constancy atoms of the form
𝑑𝑒𝑝(∅, 𝑙), which is valid when 𝑙 receives the same value across all assignments;
and variation atoms of the form 𝑣𝑎𝑟(∅, 𝑦), which is valid when 𝑦 receives
different values across at least a pair of assignments.

We now give precise rules for semantic clauses of the formulas of our lan-
guage [Hodges, 1997, Väänänen, 2007a, Galliani, 2012].12

Definition 14 (Semantic Clauses)

𝑀,𝑇 |= 𝑃(𝑡1 , . . . , 𝑡𝑛) ⇔ ∀𝑗 ∈ 𝑇 : ⟨𝑗(𝑡1), . . . , 𝑗(𝑡𝑛)⟩ ∈ 𝐼(𝑃𝑛)
𝑀,𝑇 |= ¬𝑃(𝑡1 , . . . , 𝑡𝑛) ⇔ ∀𝑗 ∈ 𝑇 : ⟨𝑗(𝑡1), . . . , 𝑗(𝑡𝑛)⟩ ∉ 𝐼(𝑃𝑛)
𝑀,𝑇 |= 𝑡1 = 𝑡2 ⇔ ∀𝑗 ∈ 𝑇 : 𝑗(𝑡1) = 𝑗(𝑡2)
𝑀,𝑇 |= ¬(𝑡1 = 𝑡2) ⇔ ∀𝑗 ∈ 𝑇 : 𝑗(𝑡1) ≠ 𝑗(𝑡2)
𝑀,𝑇 |= 𝜙 ∧ 𝜓 ⇔ 𝑀,𝑇 |= 𝜙 and 𝑀,𝑇 |= 𝜓
𝑀,𝑇 |= 𝜙 ∨ 𝜓 ⇔ 𝑇 = 𝑇1 ∪ 𝑇2 for teams 𝑇1 and 𝑇2 s.t. 𝑀,𝑇1 |= 𝜙

and 𝑀,𝑇2 |= 𝜓
𝑀,𝑇 |= ∀𝑧 𝜙 ⇔ 𝑀,𝑇[𝑧] |= 𝜙
𝑀,𝑇 |= ∃strict𝑧 𝜙 ⇔ there is a strict function 𝑓𝑠 s.t. 𝑀,𝑇[ 𝑓𝑠/𝑧] |= 𝜙
𝑀,𝑇 |= ∃lax𝑧 𝜙 ⇔ there is a lax function 𝑓𝑙 s.t. 𝑀,𝑇[ 𝑓𝑙/𝑧] |= 𝜙
𝑀,𝑇 |= 𝑑𝑒𝑝(®𝑥, 𝑦) ⇔ for all 𝑖 , 𝑗 ∈ 𝑇 : 𝑖(®𝑥) = 𝑗(®𝑥) ⇒ 𝑖(𝑦) = 𝑗(𝑦)
𝑀,𝑇 |= 𝑣𝑎𝑟(®𝑥, 𝑦) ⇔ there is 𝑖 , 𝑗 ∈ 𝑇 : 𝑖(®𝑥) = 𝑗(®𝑥) & 𝑖(𝑦) ≠ 𝑗(𝑦)

11Our variation atom was briefly mentioned in Galliani [2012]. In dependence logics, a stronger
version of the variation atom is typically considered:

Definition 13 (Variation Atom (Stronger Version))
𝑀,𝑇 |= 𝑉𝐴𝑅(®𝑥, 𝑦) ⇔ for all 𝑖 ∈ 𝑇 there is 𝑗 ∈ 𝑇 : 𝑖(®𝑥) = 𝑗(®𝑥) & 𝑖(𝑦) ≠ 𝑗(𝑦)

Note in fact that 𝑉𝐴𝑅(®𝑥, 𝑦, unlike 𝑣𝑎𝑟(®𝑥, 𝑦), is downward closed like 𝑑𝑒𝑝(®𝑥, 𝑥), a property which
typically simplifies the study of the underlying logics. Recently, Väänänen [2022] employed the
stronger variation atom, called anonymity atom in his work, to model the notion of anonymity
in database theory. See also Yang [2022] for some metatheoretical results on the propositional
fragment of these logics.

12We will later introduce an intensional notion of negation. For negation in Dependence Logic,
see Kontinen and Väänänen [2011].
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Definition 15 (Entailment) A formula 𝜙 entails a formula 𝜓, in symbols 𝜙 |= 𝜓, if
for all 𝑀 and all 𝑇 such that 𝑀,𝑇 |= 𝜙, we have 𝑀,𝑇 |= 𝜓.

A first order literal is true in a team 𝑇 iff it is true in all assignments in 𝑇.
We allow negation only on first-order atoms and we assume that formulas are
always in negation normal formal. We will return to negation in Section 4.5. A
team 𝑇 satisfies a conjunction 𝜙 ∧ 𝜓 iff 𝑇 satisfies 𝜙 and satisfies 𝜓. A team 𝑇
satisfies a disjunction𝜙∨𝜓 iff𝑇 is the union of two subteams, each satisfying one
of the disjuncts.13 We use the universal extension for the universal quantifier,
and the strict and lax functional extensions for the strict and lax existentials.

It is interesting to observe that, except for the variation atom, all formulas
in our language are downward closed (𝑇 |= 𝜙 and 𝑇′ ⊆ 𝑇 imply 𝑇′ |= 𝜙). The
variation atom, instead, is upward closed (𝑇 |= 𝜙 and 𝑇 ⊆ 𝑇′ imply 𝑇 |= 𝜙), and
therefore also union-closed (𝑇 |= 𝜙 and 𝑇′ |= 𝜙 imply 𝑇 ∪𝑇′ |= 𝜙). We note that
for downward closed formulas, the strict and lax existentials are equivalent. In
the next sections, we will see that the variation atom and its interaction with
the two existentials will play an important role.

4 Applications
4.1 Indefinites as existentials and scope behaviour
We model indefinites as strict existentials (∃(𝑠)𝑡𝑟𝑖𝑐𝑡)𝑥 𝜙) and we interpret them
in-situ.14 With this very minimal assumption, and with the help of dependence
atoms, we can already capture the scopal behavior typically associated with
indefinites [Fodor and Sag, 1982, Reinhart, 1997, Kratzer, 1998]. Dependence
atoms allow us to easily capture the different scope readings by specifying how
the indefinite’s variable co-varies with other operators. For instance, a sentence
like (6) is ambiguous between three different readings, depending on the scope
of a doctor with respect to the universal quantifiers.15

As base case, we assume a team of maximal information (i.e. the value of 𝑣 is
fixed). As shown in Table 8, 𝑑𝑒𝑝(𝑣, 𝑦) yields a wide scope interpretation where
the value of 𝑦 is constant; 𝑑𝑒𝑝(𝑣𝑥, 𝑦) yields the intermediate reading where the
value of 𝑦 depends only on the first universal quantifier; and 𝑑𝑒𝑝(𝑣𝑥𝑧, 𝑦) yields
narrow scope where the value of 𝑦 depends on both universal quantifiers.

13We are employing the so-called split or tensor disjunction [Väänänen, 2007b].
14Modelling indefinites as objects which map to the domain of our model is quite standard in

frameworks working with a set of evaluation points, as in dynamic semantics. Moreover, we would
like to mention Champollion et al. [2017], a recent relevant work which integrates dependence logics
and dynamic plural logic. Champollion et al. [2017] adopts a variant of our strict existential together
with a rigidity requirement comparable to our 𝑑𝑒𝑝(∅, 𝑥) to model indefinites with a specific use.
We thank Lucas Champollion for pointing out to us this interesting convergence.

15We give some concrete instantiation of the three readings. In the wide scope reading in
(6a), there is a particular doctor (say Dr. Malcom), such that every kid ate every food that Dr.
Malcom recommended. In the intermediate scope reading, for every kid, there is a doctor, say the
paediatrician of each kid, such that all kids ate every food that their doctor recommended. In the
narrow scope reading, the sentence is true also in cases of total co-variation between the doctors
and the foods.
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𝑣 𝑥 𝑧 𝑦

𝑣1 . . . . . . 𝑏1
𝑣1 . . . . . . 𝑏1
𝑣1 . . . . . . 𝑏1
𝑣1 . . . . . . 𝑏1

WS: 𝑑𝑒𝑝(𝑣, 𝑦)

𝑣 𝑥 𝑧 𝑦

𝑣1 𝑎1 . . . 𝑏1
𝑣1 𝑎1 . . . 𝑏1
𝑣1 𝑎2 . . . 𝑏2
𝑣1 𝑎2 . . . 𝑏2

IS: 𝑑𝑒𝑝(𝑣𝑥, 𝑦)

𝑣 𝑥 𝑧 𝑦

𝑣1 𝑎1 𝑐1 𝑏1
𝑣1 𝑎1 𝑐2 𝑏2
𝑣1 𝑎2 𝑐3 𝑏3
𝑣1 𝑎2 𝑐4 𝑏4

NS: 𝑑𝑒𝑝(𝑣𝑥𝑧, 𝑦)

Table 8: Indefinites & Scope

(6) Every kid𝑥 ate every food𝑧 that a doctor𝑦 recommended.
a. Wide scope [∃𝑦/∀𝑥/∀𝑧]: ∀𝑥∀𝑧∃𝑠𝑦(𝜙 ∧ 𝑑𝑒𝑝(𝑣, 𝑦))
b. Intermediate scope [∀𝑥/∃𝑦/∀𝑧]: ∀𝑥∀𝑧∃𝑠𝑦(𝜙 ∧ 𝑑𝑒𝑝(𝑣𝑥, 𝑦))
c. Narrow scope [∀𝑥/∀𝑧/∃𝑦]: ∀𝑥∀𝑧∃𝑠𝑦(𝜙 ∧ 𝑑𝑒𝑝(𝑣𝑥𝑧, 𝑦))

For what concerns scope, our approach is conceptually similar to Brasoveanu
and Farkas [2011] and leads to the generalization in (7). In our framework,
dependency relations are not part of the meaning of the existential, but they
are evaluated as separate clauses. This allows us to work with a uniform entry
for existentials and with a better behaved logical system.16

(7) Indefinites & Scope
An unmarked/plain indefinite ∃𝑠𝑥 in syntactic scope of 𝑂®𝑧 allows all
𝑑𝑒𝑝( ®𝑦, 𝑥), with ®𝑦 included in 𝑣®𝑧:

𝑂𝑧1 . . . 𝑂𝑧𝑛∃𝑠𝑥(𝜙 ∧ 𝑑𝑒𝑝( ®𝑦, 𝑥))

4.2 Specific Known, Specific Unknown and Non-Specific
In the example considered in the previous section in Table 8, we worked with a
team of maximal information (i.e., the value of 𝑣 was fixed). To model epistemic
distinctions, we need to distinguish between full specificity (specific known)
and what we called specific unknown: a specific individual, but epistemically
not determined. We can capture the difference using possible worlds repre-
senting epistemic possibilities. In the former case, the specific individual will
be constant across all epistemically possible worlds, while in the latter it will
vary. The conditions in Table 9 make our strategy more precise.

Constancy means that the variable 𝑥 is mapped to the same individual in
every assignment, while variation guarantees that there is at least a pair of as-
signments in which 𝑥 receives different values. Their 𝑣-counterparts relativize
these notions to the designated world variable 𝑣: 𝑣-constancy means that the

16The generalization in (7) overgenerates. Unavailable readings can be ruled following a strategy
similar to Brasoveanu and Farkas [2011]. We do not discuss this any further, as our main concerns
here are the typological variety of indefinites and the integration of epistemic readings.
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constancy 𝑑𝑒𝑝(∅, 𝑥)
𝑣 𝑥

. . . 𝑑1

. . . 𝑑1

variation 𝑣𝑎𝑟(∅, 𝑥)
𝑣 𝑥

. . . 𝑑1

. . . 𝑑2

𝑣-constancy 𝑑𝑒𝑝(𝑣, 𝑥)
𝑣 𝑥

𝑤1 𝑑1
𝑤2 𝑑2

𝑣-variation 𝑣𝑎𝑟(𝑣, 𝑥)
𝑣 𝑥

𝑤1 𝑑1
𝑤1 𝑑2

Table 9: Constancy and variation conditions

type functions requirement examplesk su ns
(i) unmarked ✓ ✓ ✓ none Italian qualcuno
(ii) specific ✓ ✓ ✗ 𝑑𝑒𝑝(𝑣, 𝑥) Georgian -ghats
(iii) non-specific ✗ ✗ ✓ 𝑣𝑎𝑟(𝑣, 𝑥) Russian -nibud’
(iv) epistemic ✗ ✓ ✓ 𝑣𝑎𝑟(∅, 𝑥) German irgend-
(v) specific known ✓ ✗ ✗ 𝑑𝑒𝑝(∅, 𝑥) Russian koe-
(vi) SK + NS ✓ ✗ ✓ 𝑑𝑒𝑝(∅, 𝑥) ⩽ 𝑣𝑎𝑟(𝑣, 𝑥) unattested
(vii) specific unknown ✗ ✓ ✗ 𝑑𝑒𝑝(𝑣, 𝑥) ∧ 𝑣𝑎𝑟(∅, 𝑥) Kannada -oo

Table 10: Marked Indefinites

value of 𝑥 is constant given an epistemic possibility, whereas 𝑣-variation guar-
antees that there is at least an epistemic possibility in which 𝑥 receives different
values. With these conditions, we can logically characterize the specific known,
specific unknown and non-specific functions (see 8). sk is captured by con-
stancy, ensuring speaker knowledge; su is captured by 𝑣-constancy, ensuring
specificity, and variation, ensuring unknownness; ns is captured by 𝑣-variation,
which as we will see will ensure scopal non-specificity.

(8) a. sk: ∃𝑥 (𝜑(𝑥, 𝑣) ∧ 𝑑𝑒𝑝(∅, 𝑥)) [constancy]
b. su: ∃𝑥 (𝜑(𝑥, 𝑣) ∧ 𝑑𝑒𝑝(𝑣, 𝑥) ∧ 𝑣𝑎𝑟(∅, 𝑥)) [𝑣-constancy + variation]
c. ns: ∃𝑥 (𝜑(𝑥, 𝑣) ∧ 𝑣𝑎𝑟(𝑣, 𝑥)) [𝑣-variation]

4.3 Variety
We have now all the ingredients to capture the variety of marked indefinites dis-
cussed in Section 2. As anticipated, we claim that marked indefinites come with
particular restrictions with respect to the dependence and variation conditions
examined in the previous section. We summarize our proposal in Table 10.

Unmarked indefinites, like English someone, don’t have particular require-
ments, and they can in principle express all the functions that we considered.
Specific indefinites are associated with ‘𝑣-constancy’: the referent of the in-
definite is the same in a given world, but it can possibly vary between worlds.
The opposite condition, ‘𝑣-variation’, forms the class of non-specific indefinites.
Epistemic indefinites require ‘variation’: the referent of the indefinite must vary,
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possibly within the same world. ‘Constancy’ leads to specific known: a unique
individual across all worlds.

Let us now turn to the last two types of Table 10, which require a more
detailed explanation. The type ‘specific known + non-specific’ cannot be sub-
sumed under a single atom. It requires that the referent satisfies either ‘con-
stancy’ or ‘𝑣-variation’, which are incompatible with each other.17 Therefore,
this type can only be captured by a (Boolean) disjunction of atoms, which
explains the difficulty of finding a lexicalized indefinite encoding almost op-
posite meanings.18 To our knowledge, there is no language which encodes this
meaning in a particular form.

Moreover, type (vi) constitutes a clear violation of convexity, normally as-
sumed as a constraint of lexicalizations [Steinert-Threlkeld et al., 2023, Engue-
hard and Chemla, 2021, Gardenfors, 2014]. For instance, all modified numerals
are convex and there are no expressions which lexicalize meanings like ‘more
than five or less than two’. The underlying assumption is that numeral modi-
fiers are defined upon a set of numbers which is linearly ordered, and no gaps
are possible. In the same way, we claim that the meaning space which defines
marked indefinites are the dependence and non-dependence conditions dis-
cussed in the present work. Figure 3 orders our atoms according to the degree
of variation (from constancy to 𝑣-variation), and shows in which sense type (vi)
creates a gap in the meaning space of marked indefinites.19

This point can be made more precise using the notion of a convex set of
teams which formalises convexity in our framework:

Definition 16 (Convexity) A set of teams 𝑃 is convex iff for all 𝑇, 𝑇′, 𝑇′′ such that
𝑇 ⊆ 𝑇′ ⊆ 𝑇′′, if 𝑇 ∈ 𝑃 and 𝑇′′ ∈ 𝑃, then 𝑇′ ∈ 𝑃.

It is easy to show that the Boolean union of the formulas associated with the
sk and ns cells in our map, as in (9), define a property which does not satisfy
convexity. A counterexample is given in Figure 2.

(9) sk + ns: 𝑑𝑒𝑝(∅, 𝑥) ⩽ 𝑣𝑎𝑟(𝑣, 𝑥)

But this is crucially not the case for the other two possible combinations,
which do define convex sets of teams, the former because 𝑑𝑒𝑝(𝑣, 𝑥) is downward-
closed, and the latter because 𝑣𝑎𝑟(∅, 𝑥) is upward-closed:

(10) sk + su: 𝑑𝑒𝑝(∅, 𝑥) ⩽ (𝑣𝑎𝑟(∅, 𝑥) ∧ 𝑑𝑒𝑝(𝑣, 𝑥)) ≡ 𝑑𝑒𝑝(𝑣, 𝑥)

(11) su + ns: (𝑣𝑎𝑟(∅, 𝑥) ∧ 𝑑𝑒𝑝(𝑣, 𝑥)) ⩽ 𝑣𝑎𝑟(𝑣, 𝑥) ≡ 𝑣𝑎𝑟(∅, 𝑥)
17Note in fact that 𝑑𝑒𝑝(∅, 𝑥) implies 𝑑𝑒𝑝(𝑣, 𝑥), which contradicts 𝑣𝑎𝑟(𝑣, 𝑥).
18To express such combination of functions, we would need a Boolean notion of disjunction:

𝑀,𝑇 |= 𝜙 ⩽ 𝜓 ⇔ 𝑀,𝑇 |= 𝜙 or 𝑀,𝑇 |= 𝜓. Note that ⩽ is definable in our system:

𝜙 ⩽𝜓 ≡ ∃𝑥∃𝑦(𝑑𝑒𝑝(∅, 𝑥) ∧ 𝑑𝑒𝑝(∅, 𝑦) ∧ (𝑥 = 𝑦 ∧ 𝜙) ∨ (𝑥 ≠ 𝑦 ∧ 𝜓))

19We observe that the conditions in Table 9 can be considered the most basic representation of
constancy and variation requirements in the variables’ assignment values, and in this sense they
constitute minimal meaning elements of the meaning space of indefinites.
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𝑣 𝑥

𝑣1 𝑑1

(a) 𝑇

𝑣 𝑥

𝑣1 𝑑1
𝑣2 𝑑2

(b) 𝑇′

𝑣 𝑥

𝑣1 𝑑1
𝑣1 𝑑2
𝑣2 𝑑2

(c) 𝑇′′

Figure 2: Failure of Convexity for SK + NS. In the teams above, it holds that
𝑇 ⊆ 𝑇′ ⊆ 𝑇′′. Moreover, 𝑇 |= 𝑑𝑒𝑝(∅, 𝑥) ⩽ 𝑣𝑎𝑟(𝑣, 𝑥), since 𝑇′′ |= 𝑑𝑒𝑝(∅, 𝑥). 𝑇′′ |=
𝑑𝑒𝑝(∅, 𝑥) ⩽ 𝑣𝑎𝑟(𝑣, 𝑥), since 𝑇 |= 𝑣𝑎𝑟(𝑣, 𝑥). But 𝑇′ ̸ |= 𝑑𝑒𝑝(∅, 𝑥)) ⩽ 𝑣𝑎𝑟(𝑣, 𝑥).

Figure 3: Meaning Space of Marked Indefinites

This gives us a principled explanation of the specific ordering among func-
tions assumed in the original Haspelmath’s map, namely sk-su-ns. A natural
constraint on implicational maps is that properties expressed by contiguous
cells must satisfy convexity. If we had ordered the functions differently than
assumed in the original map, e.g., sk-ns-su, or su-sk-ns, this constraint would
not have been satisfied.

The last type, specific unknown, requires two atoms: ‘𝑣-constancy’ for speci-
ficity and ‘variation’ for unknown. Crucially, only one language among the ones
examined by Haspelmath [1997] had such indefinite. We claim that complexity
is the reason. Specific unknown requires two atoms, and a possible lexicaliza-
tion is therefore less likely to occur.

This analysis also allows us to answer the question at the end of Section 1.
Russian has a dedicated indefinite for ns uses (-nibud’) and also an epistemic
indefinite (-to) which express both ns and su. In practice, speakers select almost
always -to for su and -nibud’ for ns. The preferential use of su for -to has arguably
a pragmatic root: speakers are aware that there is an alternative form with only
ns uses. But still Russian maintains -to as an epistemic, since turning -to into
a specific unknown would make it more complex in the sense delineated here.
An interesting balance between the language user and the language system.

We would like to conclude this section with an interesting parallelism be-
tween our dependence and variation conditions and Aristoteles’ Square of
Opposition. Figure 4 displays the traditional Aristoteles’ Square of Opposi-
tion, which is a collection of logical relations between four main categorical
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propositions.20 The corners are traditionally considered to be propositions, but
Figure 4 displays the corresponding determiner (e.g., Every A is B for Every).
Typically, only three corners of the square correspond to simple lexical items
across languages. For instance, English lexicalized every, some, and no, but not
not every as a simple determiner.21

No

Not everySome

Every

subalterns subalternscontradictories

contraries

subcontraries

Figure 4: Aristotle’s Square of Opposition

Interestingly, our dependence conditions along the dimensions of (𝑣-)constancy
and (𝑣)-variation give rise to the same logical relationships observable in the
standard Aristotelian square. Figure 7 displays our ‘Dependence Square of Op-
position’. Crucially, each corner corresponds to one of the lexicalized marked
indefinites discussed in the previous section.

In the traditional Aristotelian Square, each corner corresponds to the four
basic ways in which categorical propositions can be formed. Similarly, the De-
pendence Square of Opposition corresponds to the four basic ways in which
marked indefinites can be formed. Moreover, we note the absence of the in-
definite ‘SK + NS’ and ‘specific unknown’, reinforcing the idea the indefinites
present in the Square are simpler and more frequent, while the others are
unattested or rare.22

20We remind the reader of the classical terminology:
• Contraries: Two propositions are contraries iff they can be both false, but not both true.
• Contradictories: Two propositions are contradictories they cannot be both true and they

cannot be both false.
• Subcontraries: Two propositions are subcontraries iff they cannot both be false but can both

be true.
• Subalternation: A proposition 𝐴 subalternates a proposition 𝐵 iff 𝐴 implies 𝐵.

Note that the relationships in Figure 4 holds assuming that Every and No have existential import,
while Some and Not Every do not.

21A similar pattern can be observed in the domain of temporal adverbs. English lexicalizes
always, never and sometimes, but no corresponding adverb in the lower right corner of the square.

22An open question is why the lower right corner of the ‘ Dependence Square of Opposition’ is
lexicalized, unlike the cases we mentioned before for determiners or adverbs.
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𝑣𝑎𝑟(𝑣, 𝑥)

𝑣𝑎𝑟(∅, 𝑥)𝑑𝑒𝑝(𝑣, 𝑥)

𝑑𝑒𝑝(∅, 𝑥)

subalterns subalternscontradictories

contraries

subcontraries

Specific Known Non-Specific

Specific Epistemic

Figure 5: Dependence Square of Opposition

4.4 Non-specific Indefinites: Licensing & Variation
Non-specific indefinites are quite wide-spread cross linguistically23 and they
have received some consideration in the literature. Often, non-specific indef-
inites go under the name of ‘dependent’ indefinites from Farkas [1997]. We
note, in passing, that non-specific indefinites typically allow for a wider range
of licensors, whereas so-called dependent indefinites are typically not licensed
by modals. We leave a detailed comparision between the two notions for future
work, as a thorough analysis would involve a serious treatment of distributivity
and plurality.

Non-specific indefinites cannot occur freely in episodic sentences, but they
need to be licensed by an operator (a universal quantifier, a modal, an attitude
verb, . . . ). Examples (12) and (13) illustrate the case of Russian -nibud’.

(12) *Ivan
Ivan

včera
yesterday

kupil
bought

kakuju-nibud’
which-indef.

knigu.
book.

‘Ivan bought some [non-specific] book yesterday.’

(13) Ivan
Ivan

hotel
want-PAST

spet’
sing-INF

kakuju-nibud’
which-indef.

pesniu.
song.

‘Ivan wanted to sing some [non-specific] song.’

In Section 3.1, we have defined what counts as an initial team and the
conditions under which a sentence is grammatical. This, together with the
𝑣𝑎𝑟(𝑣, 𝑥) requirement for non-specific indefinites, is enough to explain cases
like (12) and (13).

To see this, suppose that we have an initial team where 𝑣 is assigned to two
worlds (see (a) in Table 11). Recall that non-specific indefinites trigger the 𝑣-
variation condition: ∃𝑠𝑥(𝜙(𝑥, 𝑣) ∧ 𝑣𝑎𝑟(𝑣, 𝑥)). In order to satisfy 𝑣𝑎𝑟(𝑣, 𝑥), there

23Farkas [1997] for Hungarian, Farkas [2002] for Romanian, Yanovich [2005] for Russian, Hen-
derson [2014] for Kaqchikel.
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must be a pair of assignments in which 𝑥 differs and 𝑣 is fixed. Note also that
our definition of the strict existential rules out branching. It follows that in a
condition like (a), the variation requirement of non-specific indefinites cannot
be satisfied. By defining a sentence as felicitous if it can be supported by an
initial team, our analysis predicts the infelicity of (12).

Let us examine what happens when an operator (e.g., a universal quantifier)
intervenes and licenses the non-specific indefinite: ∀𝑦∃𝑠𝑥(𝜙(𝑥, 𝑣) ∧ 𝑣𝑎𝑟(𝑣, 𝑥)).
The universal quantifier leads to a universal 𝑦-extension of the initial team (b).
In the extended team 𝑣𝑎𝑟(𝑣, 𝑥) can be then satisfied (c).

(a)

𝑣

𝑣1
𝑣2

(b)

𝑣 𝑦

𝑣1 𝑎1
𝑣1 𝑎2
𝑣2 𝑎1
𝑣2 𝑎2

(c)

𝑣 𝑦 𝑥

𝑣1 𝑎1 𝑑1
𝑣1 𝑎2 𝑑2
𝑣2 𝑎1 𝑑2
𝑣2 𝑎2 𝑑2

Table 11: Licensing of non-specific indefinites

We note that the non-specificity 𝑣𝑎𝑟(𝑣, 𝑥) atom is satisfied in teams like (c)
in Table 11, even though the value of 𝑥 does not vary in 𝑣2. The reason for this is
that 𝑣𝑎𝑟(𝑣, 𝑥) is satisfied as long as we can find an epistemic possibility where
the value of the variable for the indefinite is not determined. We do believe that
this partial variation, from an epistemic viewpoint, corresponds to the received
empirical distribution of this class of indefinites. Using the stronger variation
atom mentioned in footnote 11, would account for variation in all epistemic
possibilities.

We also observe that other indefinites cannot license non-specific ones. For
instance, an epistemic indefinite (with the 𝑣𝑎𝑟(∅, 𝑥) condition) for the initial
team in (a) leads to an extension where the value of 𝑥 is different in 𝑣1 and 𝑣2,
but still 𝑣𝑎𝑟(𝑣, 𝑥) is not satisfied, since indefinites are strict existential and do
not allow for branching extensions which are necessary to license non-specific
indefinites.

At the beginning of this section, we have observed that indefinites which
go under the name of dependent indefinites are not licensed by modals. In
this framework, this restriction can be captured by assuming that dependent
indefinites are associated with 𝑣𝑎𝑟(𝑣 ®𝑤, 𝑥), where ®𝑤 is a possibly empty sequence
of variables introduced in the discourse, ensuring that world variables are not
sufficient to trigger variation.

Other operators, like negation or modals, can license non-specific indefi-
nites. We will dedicate the next two section to extend our two-sorted team
semantics framework with negation and modality.

Before we turn to negation, we point out that cross-linguistically not all non-
specific indefinites are licensed by clausemate sentential negation, but they are
acceptable in other NPI-licensing contexts, such as conditionals’ antecedents.
This problem is known in the literature as the Bagel problem [Pereltsvaig, 2004].
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Pereltsvaig [2004] observed that for Russian nibud’, the anti-morphic context of
clausemate sentential negation creates “a bagel hole” with respect to downward
entailing environments in which nibud’ is licensed. The reason for this is the
presence of NPI lexical items that occur only in clausemate sentential negation
and are preferred in such contexts due to lexical competition.

4.5 Negation
In this section, we will extend the two-sorted language presented in Section 3
with a general notion of negation. We will first explore different notions of
negation which have been used and studied in dependence logic and team
semantics. We will then focus on intensional negation, which we adopt in the
present work.

An intuitive way to define negation in a team-based system would be as in
Definition 17. We refer to it as classical or Boolean negation.

Definition 17 (Negation)
𝑀,𝑇 |= ¬𝐵𝜙(𝑣) ⇔ 𝑀,𝑇 ̸ |= 𝜙(𝑣)

An immediate consequence of Definition 17 is the failure of the Law of
Excluded Middle, given our notion of split disjunction. More strikingly, Defi-
nition 17 seems to be ill-suited to model the negation of our dependence and
variation atoms in the interaction with the existential. For instance, suppose
that we are negating a specific known indefinite. In (14), we use for simplicity
the English a certain to convey the meaning of a specific known indefinite (i.e.,
𝑑𝑒𝑝(∅, 𝑥)), even though the empirical distribution of English a certain is differ-
ent from the specific known indefinites we considered before. A sentence like
(14) should come out as supported if there is a specific book which John does
not have or, more strongly, if John does not have any book at all. However,
¬𝐵(∃𝑥𝜙(𝑥, 𝑣) ∧ 𝑑𝑒𝑝(∅, 𝑥)) is supported in all cases in which it is not the case
that John does have a book and we know which one. So a team in which we do
not know the value of 𝑥 (i.e., a specific unknown reading) would be supporting.
We therefore need a different way to deal with negation.24

(14) a. John does not have a certain book.
b. ¬(∃𝑥𝜙(𝑥, 𝑣) ∧ 𝑑𝑒𝑝(∅, 𝑥))

An alternative notion of negation is the so-called dual negation. For the clas-
sical fragment of our language which does not include dependence or variation
atoms, this would amount to Definition 18.

Definition 18 (Dual Negation)
𝑀,𝑇 |= ¬𝐷𝛼(𝑣) ⇔ ∀𝑖 ∈ 𝑇 : 𝑀, {𝑖} ̸|= 𝛼(𝑣)

24In general, adding a negation operator like in (Definition 17) greatly increases the expressive
power of our logic, leading to full second-order logic and making the axiomatization more difficult
(see Väänänen [2007a], Kontinen and Väänänen [2011]).
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A natural question is how to extend Definition 18 for dependence atoms. The
choice taken in the Dependence Logic tradition is to assume that a dependence
atom is not supported only in the empty team. This makes it possible to
preserve double negation elimination and the De Morgan’s laws. However, it
admittedly does not capture the failure of functional dependence, and it would
again give the wrong predictions for cases like (14). In fact, provided that the
team is non-empty, ¬𝐷(∃𝑥𝜙(𝑥, 𝑣) ∧ 𝑑𝑒𝑝(∅, 𝑥)) reduces to ∀𝑥¬𝐷𝜙(𝑥, 𝑣), which
is stronger than the intended reading.

Given our two-sorted framework, we adopt an intensional notion of negation
[Brasoveanu and Farkas, 2011, Berto, 2015], which we define in Definition 19:

Definition 19 (Intensional Negation)
¬𝐼𝜙(𝑣) ⇔ ∀𝑤(𝜙(𝑤) → 𝑣 ≠ 𝑤)

Definition 19 says that when 𝜙 does not hold in the actual world, it must be
the case that for all worlds 𝑤 in which 𝜙 holds, 𝑤 must be different from the
actual world.25 Clearly, to properly interpret Definition 19, we need a semantic
clause for implication. In Dependence Logics [Yang, 2014, Abramsky and
Väänänen, 2009] different notions of implication have been studied (material,
intuitionistic, linear and maximal). Here we adopt (a version of) the maximal
implication, which as we will see gives the desired results:

Definition 20 (Implication)
𝑀,𝑇 |= 𝜙 → 𝜓 ⇔ for some 𝑇′ ⊆ 𝑇 s.t. 𝑀,𝑇′ |= 𝜙 and 𝑇′ is maximal, we have
𝑀,𝑇′ |= 𝜓

Definition 21 (Maximal Team)
Given a model 𝑀 and a formula 𝜙, a team 𝑇 maximally satisfies 𝜙 iff 𝑀,𝑇 |= 𝜙 and
for all 𝑇′′ s.t. 𝑇′ ⊂ 𝑇′′ ⊆ 𝑇, it holds 𝑀,𝑇′′ ̸ |= 𝜙

The semantic clause for implication says that a formula 𝜙 → 𝜓 holds when
there is a maximal team which supports the antecedent and supports the conse-
quent. An alternative definition of maximal implication requires ‘all’ maximal
teams 𝑇 to support the antecedent (not just ‘some 𝑇’).

Preliminary, we do observe that for classical formulas (formulas without
the dependence or the variation atom), the intensional notion of negation in
Definition 19 and the dual negation in Definition 18 are equivalent.

Some remarks on the ‘for some’ versus ‘for all’ distinction in the definition
of maximal implication are in order. For non-specific indefinites, the formula in
the antecedent of the conditional will be union-closed, and thus this difference
is trivialized. However, the for some clause will play a role when an atom like
𝑑𝑒𝑝(∅, 𝑥) leads to more than one maximal supporting team (i.e., compatibly
with different possible constants values for 𝑥.)

25Non-identity is defined as in the semantic clauses given at the beginning:

𝑀,𝑇 |= 𝑥 ≠ 𝑦 ⇔ ∀𝑖 ∈ 𝑇 s.t. 𝑖(𝑥) ≠ 𝑖(𝑦)
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Let’s then consider cases like (15), again under the assumption that a certain
stands for a specific known indefinite, triggering 𝑑𝑒𝑝(∅, 𝑥):

(15) a. John does not have a certain book.
b. ∀𝑤(∃𝑠𝑥(𝜙(𝑥, 𝑤) ∧ 𝑑𝑒𝑝(∅, 𝑥)) → 𝑣 ≠ 𝑤)

The formula in (15b) should come out true when the initial team is {𝑤∅},
corresponding to a world where John read no book), or {𝑤𝑎} (John read book 𝑎
and not 𝑏) or {𝑤𝑏} (John read book 𝑏 and not 𝑎). But not by {𝑤𝑎𝑏}, corresponding
to a world where John read both book 𝑎 and book 𝑏. This is precisely what
we predict. When the initial team is {𝑤∅}, both maximal teams satisfying the
antecedent (i.e., ∃𝑠𝑥(𝜙(𝑥, 𝑤) ∧ 𝑑𝑒𝑝(∅, 𝑥))) support the consequent (i.e., 𝑣 ≠ 𝑤).
For {𝑤𝑎}, we have two maximal teams satisfying the antecedent, but only the
one which maps 𝑥 to 𝑏 also supports the consequent. For {𝑤𝑎𝑏}, none of the
maximal teams satisfying the antecedent supports the consequent. We illustrate
this in Table 12.

(a) Supporting Team

𝑣 𝑤 𝑥

𝑤∅ 𝑤∅ 𝑎

𝑤∅ 𝑤𝑎 𝑎

𝑤∅ 𝑤𝑏 𝑎

𝑤∅ 𝑤𝑎𝑏 𝑎

(b) Non-Supporting Team

𝑣 𝑤 𝑥

𝑤𝑎 𝑤∅ 𝑎

wa wa 𝑎

𝑤𝑎 𝑤𝑏 𝑎

𝑤𝑎 𝑤𝑎𝑏 𝑎

(c) Non-Supporting Team

𝑣 𝑤 𝑥

𝑤𝑎𝑏 𝑤∅ 𝑎

𝑤𝑎𝑏 𝑤𝑎 𝑎

𝑤𝑎𝑏 𝑤𝑏 𝑎

wab wab a

(d) Supporting Team

𝑣 𝑤 𝑥

𝑤∅ 𝑤∅ 𝑏

𝑤∅ 𝑤𝑎 𝑏

𝑤∅ 𝑤𝑏 𝑏

𝑤∅ 𝑤𝑎𝑏 𝑏

(e) Supporting Team

𝑣 𝑤 𝑥

𝑤𝑎 𝑤∅ 𝑏

𝑤𝑎 𝑤𝑎 𝑏

𝑤𝑎 𝑤𝑏 𝑏

𝑤𝑎 𝑤𝑎𝑏 𝑏

(f) Non-Supporting Team

𝑣 𝑤 𝑥

𝑤𝑎𝑏 𝑤∅ 𝑏

𝑤𝑎𝑏 𝑤𝑎 𝑏

𝑤𝑎𝑏 𝑤𝑏 𝑏

wab wab b

Table 12: Worlds differ with respect to which books John has. In 𝑤∅ John has
no book, in 𝑤𝑎 John has only book 𝑎, and so on. The maximal teams satisfying
the antecedent in (15b) are depicted in blue.

Let’s now examine the interaction between non-specific indefinites and
negation. As we will see, we predict that in this environment non-specific
indefinites are licensed and behave like NPIs. To facilitate the analysis, we con-
sider the example in (16), with ‘some-nibud’’ as a placeholder for a non-specific
indefinite.

(16) a. John does not have some-nibud’ book.
b. ∀𝑤(∃𝑠𝑥(𝜙(𝑥, 𝑤) ∧ 𝑣𝑎𝑟(𝑣, 𝑥)) → 𝑣 ≠ 𝑤) .

Crucially, in this case, there is only one maximal team satisfying the an-
tecedent. The variation atom 𝑣𝑎𝑟(𝑣, 𝑥) is trivialized, and the resulting reading

21



is simply a negated existential, which is supported only for the initial team
{𝑤∅}.

(a) Supporting

𝑣 𝑤 𝑥

𝑤∅ 𝑤∅ 𝑎

𝑤∅ 𝑤𝑎 𝑎

𝑤∅ 𝑤𝑏 𝑏

𝑤∅ 𝑤𝑎𝑏 𝑏

(b) Non-supporting

𝑣 𝑤 𝑥

𝑤𝑎 𝑤∅ 𝑎

wa wa a
𝑤𝑎 𝑤𝑏 𝑏

𝑤𝑎 𝑤𝑎𝑏 𝑏

Table 13: Supporting and Non-supporting teams for (16b).

4.6 Modality
As noted at the end of Section 4.4, non-specific indefinites are licensed by
modals. This occurs also for existential modals and not just universal ones, as
illustrated in (17) for Russian -nibud’.

(17) a. *On
He

kupil
buy-PAST

kakoj-nibud’
some-nibud

to
cake.

tort

‘He bought a cake.’

b. On
He

mog
can-PAST

kupit’
buy-INF

kakoj-nibud’
some-nibud

tort
cake

‘He could buy a cake.

The language of our logic is two-sorted, with also variables for worlds. We
can therefore analyze modals as (lax) quantifiers over worlds (♢𝑤 ∼ ∃𝑙(𝑎𝑥)𝑤;□𝑤 ∼
∀𝑤). Necessity modals will be analyzed as universal quantifiers over worlds,
and existential/possibility modals as lax existential quantifiers over worlds.
Lax quantification allows for branching extensions and thus captures the avail-
ability of non-specific indefinites under possibility modals.

To see this, consider the basic paradigms in (18) and (19). The case of
necessity modals parallels the case of universal quantifiers we have examined
in the previous section. Existentials modals allow for lax functional extensions
(i.e., they can lead to branching) and thus 𝑣𝑎𝑟(𝑣, 𝑥) can be satisfied as well.

(18) Necessity Modal
a. You must take some-nibud book
b. ∀𝑤∃𝑠𝑥(𝜙 ∧ 𝑣𝑎𝑟(𝑣, 𝑥))

(19) Possibility Modal
a. You may take some-nibud book
b. ∃𝑙𝑤∃𝑠𝑥(𝜙 ∧ 𝑣𝑎𝑟(𝑣, 𝑥))
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We have seen how this framework captures universal and existential modal-
ity. Kratzer [1986] and many others distinguish between two broad classes of
modality: epistemic modals, compatible with what the speaker knows, and
root/deontic modals, compatible with a set of circumstances or normative
rules. The necessity modal must, for instance, can be used epistemically, as in
‘Sue must be home’, or deontically, as in ‘Sue must pay a fine’.

One important feature of epistemic modals are so-called epistemic contra-
dictions which arise in sentences of the form (¬𝜙 ∧ ♢𝜙):

(20) # It is not raining, and it might be raining.

As said, epistemic modality is related to the epistemic state of the speaker.
And crucially, in this system, we already have a way to characterize the epis-
temic state of the speaker: the designated variable for the actual world 𝑣. As a
result, we would like epistemic modals to be restricted to worlds over which 𝑣
ranges. Deontic modality, on the other hand, is related to particular normative
rules or desires which do not necessarily coincide with the state of affairs in the
actual world. As a result, we would like deontic modality to range over worlds
compatible with such norms, but not necessarily worlds over which 𝑣 ranges.

Recall that the underlying idea of the framework we developed here is
that the dependences in the values of the variable introduced by an indefinite
across different assignments helped us to model scopal and epistemic effects
in indefinites. Similarly, the relationship between world variables can be used
to model the difference between epistemic and deontic modality. Towards this
goal, we introduce the notion of inclusion atoms, first discussed in Galliani
[2012] and also studied in Yang [2014]:

Definition 22 (Inclusion Atom)
𝑀,𝑇 |= ®𝑥 ⊆ ®𝑦 ⇔ for all 𝑖 ∈ 𝑇, there is a 𝑗 ∈ 𝑇 : 𝑖(®𝑥) = 𝑗( ®𝑦)

Intuitively, (22) says that the values of ®𝑦 are also values of ®𝑥. Clearly, when
®𝑥 ⊆ ®𝑦 and ®𝑦 ⊆ ®𝑥, it must be that ®𝑥 = ®𝑦. We give some illustrations in Table 14.
In Table 14, 𝑥 ⊆ 𝑦 holds since any value for 𝑥 (namely, 𝑑1 and 𝑑2) is also a value
of 𝑦. Similarly, 𝑥𝑧 ⊆ 𝑥𝑦 holds, since any value for 𝑥𝑧 (namely, 𝑑1𝑑2 and 𝑑2𝑑4)
is also a value for 𝑥𝑦. But it does hold that 𝑦 ⊆ 𝑥, since for instance 𝑑3 is not a
value for 𝑥.

𝑥 𝑦 𝑧

𝑑1 𝑑1 𝑑2
𝑑1 𝑑2 𝑑2
𝑑2 𝑑3 𝑑4
𝑑2 𝑑4 𝑑4

⊆ (𝑥, 𝑦) ✓

⊆ (𝑥𝑧, 𝑥𝑦) ✓

⊆ (𝑦, 𝑥) ✗

Table 14: Illustration of inclusion atoms

Recall that epistemic modals range only over worlds compatible with the
speaker epistemic state (the values of 𝑣). Thus, we propose that an epistemic
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modal which introduces a variable 𝑤 also triggers the restriction that 𝑤 ⊆ 𝑣. By
contrast, deontic modals are relational, since for each world, different normative
rules are possible. To illustrate this, consider the basic cases in (21) and (22):

(21) Epistemic Existential Modal
a. John might be in Paris.
b. ∃𝑙𝑤 (𝜙(𝑤) ∧ 𝑤 ⊆ 𝑣)

(22) Deontic Existential Modal
a. John is allowed to be in Paris.
b. ∃𝑙𝑤 (𝜙(𝑤) ∧ 𝑅(𝑣, 𝑤))

The table below displays some possible lax extensions for (21) and (22). For
epistemic modality, the condition 𝑤 ⊆ 𝑣 guarantees that the worlds introduced
by the functional extension will always be a subset of the values for 𝑣. For
deontic modals, as illustrated in the examples in Table 15, it might not be the
case that every world has access to the same set of ‘normative-valid’ worlds,
and thus a world-dependent accessibility relation is needed. In other words,
we are here proposing that epistemic modals are global, since they globally
look at the epistemic state encoded by 𝑣, while deontic modals are relational,
in line with several accounts of epistemic and deontic modality.

(a)

𝑣

𝑣1
𝑣2
𝑣3

(b)

𝑣 𝑤

𝑣1 𝑣1
𝑣1 𝑣2
𝑣2 𝑣1
𝑣2 𝑣2
𝑣3 𝑣1
𝑣3 𝑣2

(c)

𝑣 𝑤

𝑣1 𝑤1
𝑣1 𝑤2
𝑣2 𝑤1
𝑣2 𝑤1
𝑣3 𝑤3
𝑣3 𝑤4

Table 15: Epistemic and Deontic Modals

This treatment of epistemic modals readily captures epistemic contradic-
tions like (20). Clearly, if a statement does not hold in the epistemic possibilities
in 𝑣, then it will also not hold in the worlds introduced by an epistemic modal,
since they are always a subset of the values of 𝑣. So a formula of the form
(¬𝑃𝑎 ∧ ♢𝑃𝑎) can never be satisfied.26

26We also note that inclusion atoms could be employed to model cross-referential or partitive
constructions, like the one below:

(1) There were zebras𝑥 outside. Some𝑦 of them (𝑦 ⊆ 𝑥) were sleeping.

The possibles values for the second occurrence of ‘zebras’ must be included in the values for
the first one. Of course, a proper treatment of such constructions would involve a theory of bare
nouns, plurals and partitivity. We do not expand on this here, but we note that our framework is
expressive enough to model such phenomena.
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Lastly, the reader might feel that the addition of inclusion atoms could
complexify the simple structure of the logical language introduced in Section 3.
However, it turns out that these atoms are quite interestingly related to each
other. For instance, Galliani [2012] observes that 𝑣𝑎𝑟(𝑥, 𝑦) holds only if 𝑥𝑧 ⊆ 𝑥𝑦
for some 𝑧 ≠ 𝑦.27

4.7 Epistemic indefinites
In Section 2, we briefly discussed the class of indefinites called ‘epistemic indefi-
nites’ (EIs). EIs are well-studied in the literature [Alonso-Ovalle and Menéndez-
Benito, 2010, 2013, 2017, Aloni and Port, 2015] and they include Spanish algún,
Italian un qualche, German irgendein and many more. In Section 2 we claimed
that EIs were associated with specific unknown and non-specific uses, and they
triggered the variation atom 𝑣𝑎𝑟(∅, 𝑥). In this section, we elaborate on these
ideas and refine our theory.

There are two proprieties which are shared by all EIs and that thus any
theory of EIs should account for. First, they generate an undefeasible ignorance
inference in episodic contexts.28 For instance, the ‘namely’ continuation in (23)
combined with Italian un qualche results in oddity. A similar behaviour can be
observed for German irgendein in (24).

(23) Maria
Maria

ha
has

sposato
married

un
un

qualche
qualche

dottore
doctor

(#cioè
(#namely

Ugo).
Ugo)

Maria married some doctor, namely Ugo.’

(24) Irgendein
some

Student
student

hat
has

angerufen.
called.

#Rat
#guess

mal wer?
who?

‘Some (unknown) student called. #Guess who?

Second, EIs can display a co-variation reading when they are embedded
under universal quantifiers or other quantificational operators. The sentence
in (25) is an example for Spanish algún. (25) is compatible with a situation in
which each professor dances with a different student.

(25) Todos
all

los
the

profesores
professors

están
are

bailando
dancing

con
with

algún estudiante.
algún student.

‘Every professor is dancing with some student.’

Note that the ‘ignorance reading’ is still available for cases like (25), even
though the reading is less salient. We illustrate this for the case of irgendein:

27𝑧 does not have to be a variable already introduced in the discourse. The statement means that
if we know that 𝑣𝑎𝑟(𝑥, 𝑦) is the case, then we can always find a new variable 𝑧 different from 𝑦
such that 𝑥𝑧 ⊆ 𝑥𝑦. The other direction holds if we adopt the stronger version of variation atom
mentioned in Definition 13.

28In certain contexts, EIs can also give rise to what are known as indifference readings. In such
cases, speakers may use an EI to signal that the identity of the referent is not relevant or important
in the given context, even if they might know the referent’s identity.
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(26) Jeder
every

Student
student

hat
has

irgendein
irgendein

Buch
book

gelesen.
read

a. Ignorance: There is a particular book which every student read. The
speaker does not know which one.

b. Co-variation: For every student 𝑥, there is a book 𝑦 s.t. 𝑥 read 𝑦.

We point out that these ignorance and co-variation readings really parallel
the specific unknown and non-specific uses we have examined in the previous
sections, where compatibility with both uses was captured by the variation
atom 𝑣𝑎𝑟(∅, 𝑥). Let us start with ignorance inferences in episodic contexts.

Our account predicts that in episodic contexts like (27), 𝑣𝑎𝑟(∅, 𝑥) gives rise
to the ignorance component of EIs: 𝑣𝑎𝑟(∅, 𝑥) ensures that the value of 𝑥 is not
constant across all epistemic possibilities (i.e., the speaker does not know the
value of 𝑥).

(27) a. Maria
Maria

ha
has

sposato
married

un
un

qualche
qualche

dottore.
doctor.

Maria married some doctor.’
b. ∃𝑠𝑥(𝜙(𝑥, 𝑣) ∧ 𝑣𝑎𝑟(∅, 𝑥))

As said, when combined with other quantificational operators, EIs can give
rise to co-variation/non-specific uses. The 𝑣𝑎𝑟(∅, 𝑥) atom readily explains the
availability of cases like (26). The crucial fact is that the two readings reflect
the different scope of the indefinite, which is handled by dependence atoms
(see Section 4.1). Consider the example in (28) and the supporting teams in
Table 16. The indefinite can receive both wide-scope, modelled by 𝑑𝑒𝑝(𝑣, 𝑥),
or narrow-scope, modelled by 𝑑𝑒𝑝(𝑣𝑦, 𝑥). When the indefinite receives wide-
scope, 𝑣𝑎𝑟(∅, 𝑥) ensures that the value of 𝑥 changes across different epistemic
possibilities. When the indefinite receives narrow-scope, the value of 𝑥 can
vary with respect to 𝑦 and so does not need to vary with respect to 𝑣. This
explains the disappearance of the ignorance effect in co-variation readings.

(28) Jeder𝑦
every

Student
student

hat
has

irgendein𝑥

irgendein
Buch
book

gelesen.
read

a. specific unknown: ∀𝑦∃𝑠𝑥(𝜙(𝑥, 𝑣) ∧ 𝑑𝑒𝑝(𝑣, 𝑥) ∧ 𝑣𝑎𝑟(∅, 𝑥))
b. non-specific: ∀𝑦∃𝑠𝑥(𝜙(𝑥, 𝑣) ∧ 𝑑𝑒𝑝(𝑣𝑦, 𝑥) ∧ 𝑣𝑎𝑟(∅, 𝑥))

(a)

𝑣

𝑣1
𝑣2

(b)

𝑣 𝑦 𝑥

𝑣1 𝑏1 𝑎1
𝑣1 𝑏2 𝑎1
𝑣2 𝑏1 𝑎2
𝑣2 𝑏2 𝑎2

(c)

𝑣 𝑦 𝑥

𝑣1 𝑏1 𝑎1
𝑣1 𝑏2 𝑎2
𝑣2 𝑏1 𝑎1
𝑣2 𝑏2 𝑎2

Table 16: (a) Initial team; (b) Specific unknown; (c) Non-specific (co-variation)
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It is worth pointing out that previous approaches [most notably, Alonso-
Ovalle and Menéndez-Benito, 2010, 2017] assumed that EIs trigger an anti-
singleton constraint which requires the domain of the indefinite to contain
more than one individual. Our variation condition shares the same underlying
idea. However, unlike Alonso-Ovalle and Menéndez-Benito [2017], we do not
derive the ignorance effect as an implicature, but as part of the meaning of the
indefinite, which also explains its undefeasibility. Moreover, our framework
integrates the non-specific or co-variation uses of EIs in a more general theory
of indefinites and scope.

We have examined how our account predicts both ignorance and co-variation
uses. An additional desiderata is the NPI behaviour of certain EIs when they oc-
cur in downward-entailing contexts.29 The crucial feature is the disappearance
of the ignorance component: (29) means that nobody answered any question,
not that there is a particular question that nobody answered and the speaker
does not know which one.30

(29) Niemand
Nobody

hat
has

irgendeine
irgend-one

Frage
question

beantwortet.
answered.

‘Nobody answered any question.’

In Section 4.5, we have extended our original framework with an intensional
notion of negation. It turns out that this notion predicts also the NPI behaviour
of epistemic indefinites under negation. A schematic example is illustrated in
(30), together with a supporting and a non-supporting team in Table 17. (30b)
is supported only if the initial team is {𝑤∅} (i.e., John did not read any book).
In the other cases, as in the (b) example in Table 17, the maximality of the
antecedent makes 𝑣 ≠ 𝑤 false. Note again, similarly for what happened for
non-specific indefinites, the maximal team supporting the antecedent of (30b)
is unique.

(30) a. John does not have irgend-book.
b. ∀𝑤(∃𝑠𝑥(𝜙(𝑥, 𝑤) ∧ 𝑑𝑒𝑝(𝑣𝑤, 𝑥) ∧ 𝑣𝑎𝑟(∅, 𝑥)) → 𝑣 ≠ 𝑤)

𝑣 𝑤 𝑥

𝑤∅ 𝑤∅ 𝑎

𝑤∅ 𝑤𝑎 𝑎

𝑤∅ 𝑤𝑏 𝑏

𝑤∅ 𝑤𝑎𝑏 𝑏

𝑣 𝑤 𝑥

𝑤𝑎 𝑤∅ 𝑏

wa wa a
𝑤𝑎 𝑤𝑏 𝑏

𝑤𝑎 𝑤𝑎𝑏 𝑎

Table 17: Worlds differ with respect to which books John read. In 𝑤∅ John read
no book, in 𝑤𝑎 John read only book 𝑎, and so on. The maximal team of the
antecedent of (30) is depicted in blue.

29The range of downward-entailing contexts where EIs are allowed to occur varies a lot cross-
linguistically. For instance, they normally cannot combine with sentential negation. The polarity
status of EIs is indeed quite complex: see Gianollo [2019] for an interesting diachronic perspective.

30The latter ignorance reading is available only in a particular salient context when there is a
specific unknown question that none has read. However, alternative expressions are preferred in
such cases.
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Finally, one last desiderata concerns the free choice behaviour of the German
EIs irgendein. When stressed and under a modal, irgendein exhibits a so-called
free choice reading. It should be said that this behaviour is attested only in
irgendein and other EIs typically do not allow for such a reading.

(31) Mary
Mary

muss
must

irgendeinen
irgend-one

Arzt
doctor

heiraten.
marry.

‘Mary must marry a doctor, any doctor is a permissible option’.

To capture such reading, we generalize our variation atoms to model the
degree of variation. So far, the only requirement that we imposed with variation
was that the value of the relevant variable should differ in at least 2 assignments.
It is possible to generalize to level 𝑘 [Väänänen, 2022]:31

Definition 23 (Generalized Variation)
𝑣𝑎𝑟𝑛(®𝑥, 𝑦) ⇔ for all 𝑖 ∈ 𝑇 : |{ 𝑗(𝑦) : 𝑗′ ∈ 𝑇 and 𝑖(®𝑥) = 𝑗(®𝑥)}| ≥ 𝑛

In the case of ignorance effects in epistemic indefinites, a different 𝑘 could
indicate a different degree of ignorance with respect to the value of 𝑥. For
instance, if 𝑘 is the same of the cardinality of the domain 𝐷, then the speaker is
completely ignorant with respect to the value of 𝑥.

The meaning associated with free choice is 𝑣𝑎𝑟|𝐷 |(𝑣, 𝑥): in all epistemic
possibilities of the speaker, every value for 𝑥 is a possible option. Crucially,
free choice readings arise when irgendein is stressed [Haspelmath, 1997, Aloni
and Port, 2015] and we claim that the role of stress is precisely to strengthen the
variation to level |𝐷 |:

(32) Mary
Mary

musste𝑤
had-to

irgendeinen𝑥

irgend-one
Mann
man

heiraten.
marry.

a. specific unknown:
∀𝑤∃𝑠𝑥 (𝜙 ∧ 𝑑𝑒𝑝(𝑣, 𝑥) ∧ 𝑣𝑎𝑟2(∅, 𝑥))

b. co-variation:
∀𝑤∃𝑠𝑥 (𝜙 ∧ 𝑑𝑒𝑝(𝑣𝑤, 𝑥) ∧ 𝑣𝑎𝑟2(∅, 𝑥))

c. free choice:
∀𝑤∃𝑠𝑥 (𝜙 ∧ 𝑑𝑒𝑝(𝑣𝑤, 𝑥) ∧ 𝑣𝑎𝑟|𝐷 |(𝑣, 𝑥))

Note that the variation condition needed to obtain free choice is 𝑣-variation
𝑣𝑎𝑟|𝐷 |(𝑣, 𝑥), and not 𝑣𝑎𝑟|𝐷 |(∅, 𝑥), which would be satisfied simply if we can find
|𝐷 |- values of 𝑥 across all epistemic possibilities of the speaker. This departs
from our original minimal assumption that epistemic indefinites associate with

31The generalized variation atom in (23) is equivalent to:

∀𝑖 ∈ 𝑇∃𝑗1 . . .∃𝑗𝑛 ∈ 𝑇 :
∧

1≤𝑚≤𝑙≤𝑛
(𝑖(®𝑥) = 𝑗𝑚(®𝑥) and 𝑗𝑚(𝑦) ≠ 𝑗𝑙(𝑦)

Note that this generalized atom is based on the stronger version of variation mentioned before.
By requiring that ∃𝑖 ∈ 𝑇 instead of ∀𝑖 ∈ 𝑇, we can obtain the generalized version of the weaker
variation atom we originally considered.
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Figure 6: Weakening of indefinites

𝑣𝑎𝑟(∅, 𝑥). However, we note that among EIs, the irgend-series is the only one
which displays free choice readings for which this additional requirement is
needed.32

Finally, an important difference to note is that the free choice readings of
irgend- are generally licensed by deontic modals, rather than epistemic ones. In
our framework, epistemic modals are subject to a restriction in the form of an
inclusion atom 𝑤 ⊆ 𝑣, which ensures that epistemic modals range over possible
values for the actual world. It is noteworthy that irgend-, when used under its
su reading, is typically associated with partial variation (i.e. 𝑘 < |𝐷 |) as the
speaker is generally not completely ignorant about all possible values for the
referent of the indefinite. However, a free choice reading under an epistemic
modal would require the speaker to be in a state of total epistemic variation,
which is not the typical context for the use of irgend-, suggesting why deontic
modals are the typical licensor of free choice readings for irgend-.

4.8 Weakening & Semantic Change
In this section, we consider some diachronic pathways of indefinites and
their relationship with the formal system discussed in this paper. Cross-
linguistically, we witness a general tendency of non-specific indefinites to ac-
quire su uses, turning into epistemic indefinites (the path from (a) to (b) in
Figure 6). This occurred for instance for French quelque [Foulet, 1919] and
German irgendein [Port and Aloni, 2015].

Haspelmath [1997] proposed that indefinites gradually acquire new func-
tions on his map (see Figure 1) from the right (non-specific) region to the left
(specific) region due to weakening (an indefinite gets a new function, and it thus
becomes weaker than the previous form). This would explain the cases from
(a) to (b) mentioned above. However, we do not witness further weakening
triggering the acquisition of sk (i.e., from (b) to (c)).33

Our framework makes the notion of weakening precise in terms of logical
entailment between atoms. This can be also illustred in the Dependence Square
of Opposition, discussed in Section 4.3 and represented again below for ease of

32In general, we suggest this treatment of free choice is line with the distribution of other so-called
existential free choice items [Chierchia, 2013].

33Haspelmath [1997] claims that this occurred for Portuguese algum. The data however suggests
that algum is still an epistemic indefinite and sk uses are not allowed. See Gianollo [2020] for an
interesting analysis of the Romance descendants of Latin aliquis.
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illustration, where entailment corresponds to subalternation. This leads to the
following two predictions:

1. Non-specific (𝑣𝑎𝑟(𝑣, 𝑥)) > Epistemic (𝑣𝑎𝑟(∅, 𝑥));

2. Specific-known (𝑑𝑒𝑝(∅, 𝑥)) > Specific (𝑑𝑒𝑝(𝑣, 𝑥)).

The former corresponds to the diachronic path of the epistemic indefinites
outlined above. The latter is a path predicted by the weakening mechanism,
which could be operational in the development of indefinite articles from one-
cardinals [Givón, 1981], but it is admittedly not attested in the domain of
indefinite pronouns. Quite importantly, we have no further ‘atomic weakening’
triggering the acquisition of sk, which explains why such development is not
attested.34

Another perspective on possible constraints in language change is that the
representation of known versus unknown requires variables ranging over a do-
main of abstract entities, which typically occur later in grammaticalization pro-
cesses [Traugott and Dasher, 2002, Heine, 1997].

While in a language without world variables, the contrast between 𝑑𝑒𝑝(∅, 𝑥)
and 𝑣𝑎𝑟(∅, 𝑥) accounts for the difference between specific and non-specific, the
use of world variables is necessary to express also the known vs unknown
distinction (with now 𝑣𝑎𝑟(∅, 𝑥) vs 𝑑𝑒𝑝(∅, 𝑥) standing for unknown vs known
and 𝑣𝑎𝑟(𝑣, 𝑥) and 𝑑𝑒𝑝(𝑣, 𝑥) standing for specific and non-specific). Assuming
thus that individual quantification precedes world quantification leads to the
following two predictions:

1. Non-specific > Epistemic;

2. Specific > Specific known.

We observe that the path from non-specific to epistemic can be explained by
both the weakening and concreteness factors, which can be taken as evidence
of why this diachronic path is common. Furthermore, we can hypothesize that
the absence of a change from specific-known to specific as a form of weakening
can be explained by its clash with the second constraint.

4.9 Specific Indefinites
Finally, we dedicate this section to some remarks on the behaviour of specific
indefinites and scope. The aim of the present paper is to characterize the
behaviour of indefinites from a typological and cross-linguistic viewpoint. As
a result, so far we have not provided extended discussions of the comprehensive
behaviour of a particular indefinite in a given language.

In the previous sections, we have argued that specific indefinites (specific
or specific known) are only compatible with wide-scope readings. Recently,

34To get unmarked indefinites from epistemic ones, we would need 𝑣𝑎𝑟(∅, 𝑥) ⩽ 𝑑𝑒𝑝(∅, 𝑥), which
trivializes the dependence conditions, and it is arguably a complex operation. Note also that
𝑣𝑎𝑟(∅, 𝑥) ∧ 𝑑𝑒𝑝(∅, 𝑥) |= ⊥, which shows that sk contradicts the atom for epistemic indefinites.
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𝑣𝑎𝑟(𝑣, 𝑥)

𝑣𝑎𝑟(∅, 𝑥)𝑑𝑒𝑝(𝑣, 𝑥)

𝑑𝑒𝑝(∅, 𝑥)

subalterns subalternscontradictories

contraries

subcontraries

Specific Known Non-Specific

Specific Epistemic

Figure 7: Dependence Square of Opposition

Martí and Ionin [2019] discussed the scopal behaviour of Russian koe and to in
a series of experiments. To remind the reader, in our system koe is classified
as a specific known indefinite, triggering 𝑑𝑒𝑝(∅, 𝑥), while to is an epistemic
indefinite, triggering 𝑣𝑎𝑟(∅, 𝑥). Martí and Ionin [2019] examined which read-
ings are available by paraphrasing a sentence containing an indefinite with an
intended interpretation and asking if such reading would be possible. (33) is an
example. With regard to koe, they showed that the default reading for cases like
(33) is indeed wide-scope. But narrow-scope configurations are allowed when
the reading is functional, as in (33b), but crucially not when such function is
not made explicit, as in (33c).

(33) Každyj
every

doktor
doctor

osmotrel
examined

koe-kakogo
koe-wh

pacienta.
patient

‘Every doctor examined some patient.’
a. WSR context (no function supported):

Točnee,
more precisely

vse
all

doktora
doctors

osmotreli
examined

pacienta,
patient

kotoryj
which

privlek
attracted

vseobščee
everyone’s

vnimanie
attention

svoimi
self’s

neobyčnymi
unusual

simptomami.
symptoms

‘That is, all the doctors examined the patient who attracted every-
one’s attention with his unusual symptoms.’

b. functional NSR context (function supported):
Točnee,
more precisely

každyj
every

doktor
doctor

osmotrel
examined

samogo
most

bol’nogo
sick

pacienta
patient

v
in

ego
his

otdelenii.
unit.

’That is, every doctor examined the sickest patient in his unit.’
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c. NSR (no function supported):
Točnee,
more precisely

vse
all

doktora
doctors

osmotreli
examined

raznyh
different

pacientov.
patients

‘That is, all the doctors examined different patients.’
(from Martí and Ionin [2019])

This would explain the contrast between a quantifier like every doctor which
allows for functional readings with respect to the doctor and the indefinite, and
an attitude verb like want which does not allow for such functional readings.
In our framework, such functional readings can be captured by introducing the
relevant choice functional mechanism in line with previous choice-functional
approaches of indefinites (e.g., Reinhart [1997], Kratzer [1998], Winter [1997]).
A tentative logical form for a functional reading like (33b) is offered in (34),
where 𝑓 is a function from doctors to units, and the dependence atom now
guarantees that the function remains the same across all the assignments (i.e., it
is possible to associate the narrow-scope reading with a specific function). Note
that such analysis makes use of variables ranging over functions, which are not
part of the logical language we introduced. We do not pursue this any further,
since our account of these functional readings would not offer any novel result
besides what choice-functional analyses have already considered.

(34) ∀𝑦∃ 𝑓 (𝜙( 𝑓 (𝑦), 𝑣) ∧ 𝑑𝑒𝑝( 𝑓 ,∅))

Martí and Ionin [2019] discuss also similar cases for intermediate scope con-
figurations, and they show that koe does indeed licence such readings, when
they are interpreted functionally. Moreover, they show that to is compatible
with all readings, both functional and non-functional/quantificational, con-
firming our proposal that an indefinite like to does not trigger any restriction
with respect to the 𝑑𝑒𝑝 atoms.

4.10 Final Proposal & Illustration
Let us recap what we have discussed so far. Indefinites are strict existentials,
which are interpreted in-situ. The scope of indefinites is accounted by depen-
dence atoms, which allow co-variation with all the variables in the syntactic
scope of the indefinite (see generalization in (7)). Marked indefinites further
trigger the obligatory activation of particular dependence or variation atoms:

(35) Marked Indefinites & Atoms

𝑂𝑧1 . . . 𝑂𝑧𝑛∃𝑠𝑥(𝜙 ∧ 𝐴𝑇𝑂𝑀)

a. Plain: 𝑑𝑒𝑝( ®𝑦, 𝑥), where ®𝑦 ⊆ 𝑣®𝑧
b. Specific Known: 𝑑𝑒𝑝( ®𝑦, 𝑥) with ®𝑦 = ∅
c. Specific: 𝑑𝑒𝑝( ®𝑦, 𝑥) with ®𝑦 = 𝑣

d. Epistemic: 𝑑𝑒𝑝( ®𝑦, 𝑥) ∧ 𝑣𝑎𝑟(®𝑧, 𝑥) with ®𝑧 = ∅
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WS-K
𝑑𝑒𝑝(∅, 𝑥)

WS-U
𝑑𝑒𝑝(𝑣, 𝑥)

IS
𝑑𝑒𝑝(𝑣𝑦, 𝑥)

NS
𝑑𝑒𝑝(𝑣𝑦𝑧, 𝑥)

unmarked
✓ ✓ ✓ ✓

specific
𝑑𝑒𝑝(⊆ 𝑣, 𝑥) ✓ ✓ ✗ ✗

non-specific
𝑣𝑎𝑟(𝑣, 𝑥) ✗ ✗ ✓ ✓

epistemic
𝑣𝑎𝑟(∅, 𝑥) ✗ ✓ ✓ ✓

specific known
𝑑𝑒𝑝(∅, 𝑥) ✓ ✗ ✗ ✗

specific unknown
𝑑𝑒𝑝(𝑣, 𝑥) ∧ 𝑣𝑎𝑟(∅, 𝑥) ✗ ✓ ✗ ✗

Table 18: Marked Indefinites & Scope

e. Non-specific: 𝑑𝑒𝑝( ®𝑦, 𝑥) ∧ 𝑣𝑎𝑟(®𝑧, 𝑥) with ®𝑧 = 𝑣

f. Specific Unknown: 𝑑𝑒𝑝( ®𝑦, 𝑥) ∧ 𝑣𝑎𝑟(®𝑧, 𝑥) with ®𝑦 = 𝑣 and ®𝑧 = ∅

As an illustration, consider a configuration of the form∀𝑧∀𝑦∃𝑠𝑥𝜙, where the
existential stands for a (marked) indefinite. Our predictions are summarized in
Table 18. We predict wide-scope (known and unknown) for specific indefinites.
Epistemic indefinites allow all scope configurations, except for wide-scope with
known referent. For non-specific indefinites, we predict that they do not allow
for wide-scope readings, but they admit other readings. This is explained by
the fact that non-specific indefinites need at least one operator with whom they
can co-vary. This behaviour of non-specific indefinites is coherent with the data
of Russian -nibud’ discussed in [Partee, 2004], as illustrated in (36). Moreover,
in Section 4.9 we have already discussed in which sense our predictions match
the experimental results for the scope of specific and epistemic indefinites.

(36) Možet
may

byt’,
be,

Maša
Maša

xočet
want

kupit’
buy

kakuju-nibud’
which-indef.

knigu.
book.

a. Narrow Scope: It may be that Maša wants to buy some book.
b. Intermediate Scope: It may be that there is some book which Maša

wants to buy.
c. #Wide-scope: There is some book such that it may be that Maša

wants to buy it.

5 Conclusions
We have developed a two-sorted team semantics framework accounting for
indefinites. In this framework, marked indefinites trigger the obligatoriness
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of dependence or variation atoms, responsible for their scopal and epistemic
interpretations. We have applied the framework to characterize the typological
variety of indefinites in the case of (non-)specificity. We have then showed how
this system accounts for several properties and phenomena associated with
(non-)specific indefinites.

Future studies could focus on further exploring the logical properties of
the framework presented here. Additionally, it would be valuable to extend
the account to include other functional uses of indefinites, plurals and plural
indefinites, and within-language analyses of particular indefinite systems.
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