Non-specific and Dependent Indefinites When -nibud' meets po

Marco Degano - University of Amsterdam - m.degano@uva.nl

Non-specificity and Dependency

NON-SPECIFIC indefinites are indefinites which do not allow for specific uses [1, 2]. Examples are Russian nibud', Georgian me, Greek típota. (1) Kazhdyy mal'chik chital boy read every kakuyu-nibud' knigu. which-nibud book 'Every boy read some book.'

Evaluation Plurality (EP): indefinites associated with a set of assignments across which their value must vary.

Dependent Variable (DV): indefinites need to covary with respect to the values of another variable

We define dependence as the (Boolean) negation of independence. $info-dep_v(y, x)$ models the dependence of x on y.

 $info-dep_v(y,x) \Leftrightarrow \exists w \in T(v):$ $\exists a_1, a_2 \in T(y) : T_{vy=v_1a_1}(x) \neq$ $T_{vy=v_1a_2}(x)$

 $info-dep_v(y,x) \not\equiv var(v,x)$

Dependent: possible autolicensing of y in *info-dep*_v(y, x) with a covert variable y (e.g., event-like).

Modal

Modals are treated as quantifiers over possible worlds.

Non-specific: licensed similarly to the distributive DP case.

DEPENDENT indefinites are indefinites which depend on another operator [3, 4, 5, 6, 7]. Examples are Russian po, Hungarian egy-egy, Romanian câte.

(2) Kazhdyy mal'chik chital **po** knige. read po book boy every 'Every boy read some book.'

Both (1) and (2) are false if every boy read the same book.

Distribution

Non-specific and dependent indefinites display both free variation and complementary distributions.

How to formally model EP and DV?

What is the nature of distributivity of DV?

Team Semantics

Formulas interpreted over a set of evaluation points, called teams. Here we take teams to be sets of assignment functions. Natural correspondence with dynamic semantics frameworks (for plurals).

We can model both world- $T \mid v \mid x$ variables v ranging over $i_1 | v_1 | d_1$ possible worlds and do $i_2 | v_2 | d_2$ main variables x ranging $\imath_3 \mid v_3 \mid d_3 \mid$ over individuals. $i_4 | v_4 | d_4$ $\exists_s x \phi(x,v)$

[9, 10]: different kind of indefinites impose different conditions on the

However, given a branching operator $\mathcal{O}y$, it holds that

 $\mathcal{O}y \exists_s x(\phi(x,v) \land info-dep_v(y,x)) \equiv$ $\mathcal{O}y \exists_s x(\phi(x,v) \wedge var(v,x))$

Plurality

We assume that the variable of a plural DP ranges over a plural domain (i.e., collective readings default, distributive readings via distributive operator).

 $T \mid v$ Two boys walked. y $\exists_s y(2(y) \land boy(y,v))$ $i_1|v_1 \hspace{0.1cm} b_1 \oplus b_2|$ $i_2|v_2|b_2\oplus b_3|$ $\wedge \texttt{walk}(y, v))$

The Russian po

Plural DP: the universal quantifier vse 'all' is strongly non-distributive. nibud' is not felicitous under vse.

Maximality operator $M_u^v(\phi(y))$: the value of y satisfying ϕ is maximal with respect to a plural domain $\wp(D) \setminus \varnothing$.

Dependent: extensional dependency condition in [3] stating that y in $info-dep_{v}(y,x)$ cannot be a world variable.

Overt Distributivity and Dependency

Po can co-occur with *-nibud'* rescuing -nibud' from infelicity and without affecting the resulting meaning

- (6) Vse mal'chiki chitali po all boy read po kakoi-nibud' knige. which-**nibud** book.
 - 'All boys read some book.'
- \Rightarrow Option I viewing *po* as a distributive operator.

 \Rightarrow Unifying *po* as a dependent indefinite and as an adnominal distributive

NS DEP

Episodic	X	(\mathbf{X})
Distributive DP	\checkmark	\checkmark
Modal	\checkmark	X
Plural DP	(\mathbf{X})	\checkmark

Some dependent indefinites exhibit auto-licensing in episodic contexts [4].

Non-specific indefinites are not licensed by plural DPs, unless they cooccur with a distributive marker or a dependent indefinite itself.

(3)# Dva/vse mal'chika/i chitali two/all boy read kakuyu-nibud' knigu. which-nibud book

(4) Dva/vse mal'chika/i chitali **po** two/all boy read po knige.

variable they are associated with.

Non-specific Indefinites

Variation condition: the value of the indefinite variable x must vary given a value for v.

 $var(v,x) \Leftrightarrow \exists i,j \in T : i(v) =$ $j(v) \& i(x) \neq j(x)$

Dependent Indefinites

Informationa	Dependence			
condition:	the	value	of	the
indefinite varia	ble x	must	be in	for-
mationally dep	pende	nt on	anot	ther

variable y.

#All boys read book-nibud'. $M^v_u(\mathrm{boy}(y,v) \wedge \exists_s x(\mathrm{book}(x,v) \wedge \exists_s x(\mathrm{book}(x,v)))$ $read(yx, v) \land var(v, x)))$

Variation cannot be satisfied in such environment, and *-nibud'* is prediced to be out. But *po* occurs easily:

All boys read po book. $M_y^v(\mathrm{boy}(y,v) \wedge \delta_y(\exists x(\mathrm{book}(x,v) \wedge \delta_y(\exists x(\mathrm{book}(x,v)))))$ $read(yx, v) \land info-dep_v(y, x))))$

Distributivity operator $\delta_y(\phi(y))$: $\phi(y)$ must hold for each atom in y.

T	v	y					
i_1	v_1	$b_1 \in$	$\oplus b$	$_2 \oplus$	$ i b_3 $		~7
		T'	v	y	\boldsymbol{x}		
		i'_1	v_1	b_1	d_1		
		;//		h	\mathcal{A}		

item [11, 12].

At the same time, *po* can co-occur with a dedicated distributive quantifier like kazhdyj 'each':

(7) Vse/Dva mal'chiki/a chitali po read **po** all/two boy knige **kazhdyj**. book each.

'All/two boys read some book.'

 \Rightarrow Option II viewing *po* as exhibiting distributive concord.

References

[1] Haspelmath (1997). Indefinite Pronouns. • [2] Partee (2005). Semantic Typology of Indefinites II. • [3] Farkas (1997). Dependent Indefinites. • [4] Farkas (2021). Multiple Event Readings with Dependent Indefinites. \bullet [5] Henderson (2014). Semantics and Pragmatics 7.6 \bullet [6] Kuhn (2017). Journal of Semantics 34.3 • [7] Brasoveanu & Farkas (2011). Linguistics and Philosophy $34.1 \bullet [8]$ Pereltsvaig (2008). Russian nibud'-Series as Markers of Co-variation. • [9] Aloni & Degano (2022). (Non-)specificity across languages. \bullet [10] Degano (2024). Indefinites and their values. \bullet [11] Champollion (2017). Parts of a Whole. • [12] Zimmermann (2002). Boys buying two sausages each.

(5) Dva/vse mal'chika/i chitali **po** two/all boy read po kakoi-nibud' knige. which-nibud book

Evaluation Plurality vs Dependent Variable

Two main accounts (for dependent indefinites) [4]: Evaluation Plurality and **Dependent Variable**.

Team semantics can be used to model formally the independence between variables. $ind_v(\vec{u}, x)$ models the dependence of x on \vec{u} .

 $ind_v(\vec{u}, x) \quad \Leftrightarrow \quad \forall w \in T(v)$: $T_{v=w}(\vec{u}x) = T_{v=w}(\vec{u}) \times T_{v=w}(x)$

Option I: po contributes a distributive operator |6|. Option II: *po* exhibits distributive concord with a distributive operator [5].

Further Predictions

Episodic Non-specific: variation cannot be supported in episodic context.

Acknowledgements

I thank Jenia Khristoforova and Miriam Rey for their judgments with the Russian data.

UNIVERSITY OF AMSTERDAM Institute for Logic, Language and Computation