Meaning, Reference and Modality Exercises 9-10-11*

Dynamic Semantics

DPL

Write out the DPL interpretation for the following pair of formulas. Which pairs are equivalent?

(1) a.
$$\exists x (Px \land Qx) \land Rx$$

b.
$$\exists x (Px \land Qx \land Rx)$$

(2) a.
$$\exists x (Px \land Qx) \land Rx$$

b.
$$\exists y (Py \land Qy) \land Rx$$

(3) a.
$$Rx \wedge \exists x (Px \wedge Qx)$$

b.
$$Rx \wedge \exists y (Py \wedge Qy)$$

(4) a.
$$\neg \exists x Px \lor Qx$$

b.
$$\exists x Px \rightarrow Qx$$

(5) a.
$$\exists x Px \land Qx$$

b.
$$\neg(\exists x Px \rightarrow \neg Qx)$$

Update Semantics

Consider the formulas below. Are they valid in Veltman's update semantics?

^{*}For any question or comment, please contact Marco at m.degano@uva.nl

- (6) a. $\Diamond p \rightarrow p$
 - b. $p \rightarrow \Diamond p$
- (7) a. $\Box p \rightarrow p$

b.
$$p \rightarrow \Box p$$

A formula ϕ is valid iff $\forall s : s \subseteq s[\phi]$

$$s[\phi \to \psi] = \{i \in s | \text{ if } i \in s[\phi] \text{ then } i \in s[\phi][\psi] \}$$

Dynamic Modal Predicate Logic

The Broken Vase

Consider the broken vase scenario discussed in Groenendijk, Stockhof and Veltman (1996):

- (8) a. $\exists x Hx \land \Diamond Gx$
 - b. $\exists x (Hx \land \Diamond Gx)$

(6a) and (6b) are not equivalent, given GSV (1996)'s treatment of $\exists x$ as in (A) below. Consider now the global assignment in (B), and discuss the consequences for the broken vase scenario.

- (A) $s[\exists x \phi] = \bigcup_{d \in D} (s[x/d][\phi])$
- (B) $s[\exists x \phi] = (\bigcup_{d \in D} s[x/d])[\phi]$

Consistent and Coherent

Consider the sequence of sentences below. Treat $\exists x Px$ with a uniqueness requirement $\exists ! x Px$. Are they *consistent*? Are they *coherent*? Do the results match your intuitions?

- (9) a. Someone has done it. It might be Alice. But it also might not be Alice.
 - b. $\exists x Px \land \Diamond(x = a) \land \Diamond(x \neq a)$
- (10) a. Someone has done it. It might not be Alice. It is Alice
 - b. $\exists x Px \land \Diamond(x \neq a) \land (x = a)$
- (11) a. Someone has done and it might be Alice and it might not be Alice.
 - b. $\exists x (Px \land \Diamond(x = a) \land \Diamond(x \neq a))$

- (12) a. Someone has done it. Alice has done it. Anyone might be Alice. Bob might have done it.
 - b. $\exists x Px \land (x = a) \land \forall x (\Diamond(x = a)) \land \Diamond(x = b)$

Now drop the uniqueness requirement $\exists !xPx$ and treat $\exists xPx$ as $\exists xPx$. Which ones are now *coherent*? Which ones are now *consistent*?