
Exercises Structures for Semantics

Here a selection of exercises related to the materials I used for the tutorial

and assessment components of the course Structures for Semantics during the

summer terms of 2021-2023 while I was teaching assistant for the course. The

full course includes many more exercises and materials from earlier editions.

Since I was not the sole contributor to these materials, I am not making them

publicly available here. If you would like access to them, please reach out.

1 Indefinites

1.1 The and type-shifting rules
Consider the following GQT definition for the:

(𝑡ℎ𝑒 [𝑛])(𝐴) =
{
𝑒𝑣𝑒𝑟𝑦(𝐴) if |𝐴| = 𝑛

undefined otherwise

(i) Assume that |𝑚𝑎𝑛 | = 1. Determine whether 𝑡ℎ𝑒[1](𝑚𝑎𝑛) is a filter, an

ideal or an ultrafilter of the powerset lattice ⟨℘(𝐷), ⊆⟩, based on the do-

main 𝐷. Provide proofs of your claims.

(ii) Assume that |𝑚𝑎𝑛 | = 1. Determine whether the following are equivalent

or not. Motivate your answer.

(a) 𝐵𝐸(𝑡ℎ𝑒[1](𝑚𝑎𝑛)) ≡ 𝑖𝑑𝑒𝑛𝑡(𝑙𝑜𝑤𝑒𝑟(𝑡ℎ𝑒[1](𝑚𝑎𝑛)))
(b) 𝐵𝐸(𝑡ℎ𝑒[1](𝑚𝑎𝑛)) ≡ 𝐵𝐸(𝑙𝑖 𝑓 𝑡(𝑖𝑜𝑡𝑎(𝑚𝑎𝑛)))

(iii) Consider now the set-theoretic interpretation of THE (man), where THE

is Montague’s translation of the definite article in English:

𝑇𝐻𝐸 = 𝜆𝑃𝜆𝑄(∃𝑥(∀𝑦(𝑃(𝑦) ↔ 𝑦 = 𝑥) ∧𝑄(𝑥)))

Does the following equation hold? Motivate your answer.

(c) 𝑇𝐻𝐸(𝑚𝑎𝑛) ≡ 𝑡ℎ𝑒[1](𝑚𝑎𝑛)
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(iv) Assume J𝑊K = {𝑎, 𝑏} = 𝑤𝑜𝑚𝑎𝑛. Determine whether 𝑡ℎ𝑒[2](𝑤𝑜𝑚𝑎𝑛) is a

filter, an ideal or an ultrafilter of the powerset lattice ⟨℘(𝐷), ⊆⟩, based on

the domain 𝐷. No proofs needed. Consider now Landman’s translation

of the women using the 𝜎 operator: 𝜎𝑥.↑𝑊(𝑥). Show that the following

equation does not hold.

(d) J𝜎𝑥.↑𝑊(𝑥)K ≡ 𝑡ℎ𝑒[2](𝑤𝑜𝑚𝑎𝑛)

(v) Define type-shifting rules which can be applied to 𝑡ℎ𝑒[2](𝑤𝑜𝑚𝑎𝑛) to

verify the statement in (iv-d).

1.2 Indefinites and Team Semantics
Consider the following ambiguous sentence:

(A) Ali wants to marry a philosopher.

(i) Outline the ambiguity of (A). Provide translations of the two readings of

(S) using Aloni & Degano (2022) dependence atoms (you should translate

WANT in terms of a universal quantification over worlds).

(ii) Consider now the following variant of (A) involving a marked indefinite

determiner IND𝑥 triggering the activation of the variation atom var(𝑣, 𝑥).
Which one of the two readings of (A) do Aloni & Degano (2022) predict

for (B)?

(B) Ali wants to marry IND𝑥 philosopher.

2 Generalized Quantifier Theory

2.1 Possesives
1. Find the GQT characterization of the determiners in (a) and (b);

(a) Every book
(b) John’s books

2. Show that (a) satisfies ISOM, while (b) does not.
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2.2 Connectedness/Convexity
(CON) A determiner 𝐷𝑒𝑡 is right connected/convex iff for all 𝑀 with 𝐴, 𝐵2 ⊆ 𝑀
and 𝐵1 ⊆ 𝐵 ⊆ 𝐵2,

𝐷𝑒𝑡𝑀(𝐴, 𝐵1) and 𝐷𝑒𝑡𝑀(𝐴, 𝐵2) imply 𝐷𝑒𝑡𝑀(𝐴, 𝐵)

(from van Benthem 1984)

For the following exercises, consider only determiners which can be repre-

sented in the Tree of Numbers (i.e., EXT, CONS and ISOM are satisfied)

(i) Give two examples of natural language determiners which are downward

monotone on the right (i.e., 𝑀𝑂𝑁 ↓).

(ii) Give two examples of natural language determiners which are connected,

but not monotone on any argument.

(iii) Represent the determiners you found in part (i) and (ii) in the Tree of

Numbers. Which pattern do 𝑀𝑂𝑁 ↓determiners exhibit? Which pattern

do 𝐶𝑂𝑁 determiners exhibit?

3 Intensions

3.1 Ups and Downs
Assume the following type declarations.

𝐼𝐿 Declarations:

Type Variables Constants
𝑒 𝑥 𝑗
⟨𝑠, 𝑒⟩ 𝑟 -

⟨𝑒 , 𝑡⟩ 𝑋 𝑊
⟨⟨𝑠, 𝑒⟩, 𝑡⟩ 𝑄 𝐶
⟨𝑠, ⟨𝑒 , 𝑡⟩⟩ 𝑃 -

⟨𝑠, 𝑡⟩ 𝑝 -

Determine if the following pair of expression are logically equivalent or not.

No proofs needed: answering Equivalent/Non-Equivalent is sufficient. (/If

not, construct a partial model in IL in which the two expression have different

values.)

1. 𝑗 ∨∧ 𝑗
2. 𝑟 ∧∨𝑟
3. 𝜆𝑝 □∨𝑝(∧𝐶(∧ 𝑗) □𝐶(∧ 𝑗)
4. 𝜆𝑋 □𝑋(𝑗)(𝜆𝑥𝑊(𝑥) □𝑊(𝑗)
5. 𝜆𝑃 □∨𝑃(𝑗)(∧𝜆𝑥𝑊(𝑥)) □𝑊(𝑥)
6. 𝜆𝑄 □𝑄(∧ 𝑗)(𝜆𝑟𝐶(𝑟)) □𝐶(∧ 𝑗)
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3.2 De re and de dicto
The sentence below is ambiguous between a de re and de dicto reading. (You can

treat ‘Miss Netherlands’ as an individual constant.)

(1) John believes that Miss Netherlands is a dancer.

a. De re: John has a belief about a certain individual called ‘Miss Nether-

lands’ in the current world, the belief being that this individual is a

dancer.

b. De dicto: John believes that whoever is named as ‘Miss Netherlands’ is

a dancer.

Translate the two readings into IL and Ty2. Show using Theorem 6 from

Gamut (p. 136) that the IL and Ty2 translations are equivalent.

4 Extensional Montague Grammar

4.1 Exceptive constructions
Extend the EMG fragment with exceptive constructions:

(2) Every student but John passed (the course).

(i) Provide an extension of EMG where but has category 𝑇/(𝐶𝑁/𝐶𝑁). What

are the problems of such analysis?

(ii) Provide now an extension of EMG which does not suffer from the prob-

lems you found before. Does your analysis overgenerate?

4.2 Pre-nominal adjectives in EMG
Extend the fragment of EMG presented in the EMG notes to account for ‘pre-

nominal’ adjectives like excellent below:

(3) John is an excellent singer.

Treat be as a particular transitive verb with the following translation:

be: 𝜆𝑋𝜆𝑥 𝑋(𝜆𝑦(𝑥 = 𝑦))
Consider the contrast below. How to account for this in EMG?

(4) a. John is an excellent singer.

b. ⇒ John is a singer.
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(5) a. John is a former singer.

b. ⇏ John is a singer.
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Definitions
EMG

𝑆2 : If 𝛼 ∈ 𝑃(𝑆/𝐼𝑉)=𝑇 and 𝛽 ∈ 𝑃𝐼𝑉 , then 𝐹1(𝛼, 𝛽) ∈ 𝑃𝑆,
where 𝐹1(𝛼, 𝛽) = 𝛼𝛽′ (𝛽′ is 𝛽 + inflection)

𝑇2 : If 𝛼 ∈ 𝑃𝑇 and 𝛽 ∈ 𝑃𝐼𝑉 , and 𝛼 ↦→ 𝛼′ and 𝛽 ↦→ 𝛽′,
then 𝐹1(𝛼, 𝛽) ↦→ 𝛼′(𝛽′)
𝑆′3 : If 𝛼 ∈ 𝑃𝑇/𝐶𝑁 and 𝛽 ∈ 𝑃𝐶𝑁 , then 𝐹2(𝛼, 𝛽) ∈ 𝑃𝑇 ,
where 𝐹2(𝛼, 𝛽) = 𝛼𝛽

𝑇′3 : If 𝛼 ∈ 𝑃𝑇/𝐶𝑁 and 𝛽 ∈ 𝑃𝐶𝑁 , and 𝛼 ↦→ 𝛼′ and
𝛽 ↦→ 𝛽′, then 𝐹2(𝛼, 𝛽) ↦→ 𝛼′(𝛽′)
𝑆7 : If 𝛼 ∈ 𝑃(𝐼𝑉/(𝑆/𝐼𝑉))=𝑇𝑉 and 𝛽 ∈ 𝑃𝑇 , then 𝐹6(𝛼, 𝛽) ∈
𝑃𝐼𝑉 , where 𝐹6(𝛼, 𝛽) = 𝛼𝛽∗ (𝛽∗ is 𝛽 + accusative )

𝑇7 : If 𝛼 ∈ 𝑃𝑇𝑉 and 𝛽 ∈ 𝑃𝑇 , and 𝛼 ↦→ 𝛼′ and 𝛽 ↦→ 𝛽′,
then 𝐹6(𝛼, 𝛽) ↦→ 𝛼′(𝛽′)
𝑆8𝑛 : If 𝛼 ∈ 𝑃𝑇 and 𝛽 ∈ 𝑃𝑆, then 𝐹7(𝛼, 𝛽) ∈ 𝑃𝑆, where
𝐹7(𝛼, 𝛽) = 𝛽[ℎ𝑒𝑛/𝛼]
𝑇8𝑛 : If 𝛼 ∈ 𝑃𝑇 and 𝛽 ∈ 𝑃𝑆, and 𝛼 ↦→ 𝛼′ and 𝛽 ↦→ 𝛽′,
then 𝐹7(𝛼, 𝛽) ↦→ 𝛼′(𝜆𝑥𝑛𝛽′)

𝑙𝑜𝑣𝑒 ↦→ 𝜆𝒯𝜆𝑥(𝒯 (𝜆𝑦(𝑙𝑜𝑣𝑒(𝑦)(𝑥))))
𝑒𝑣𝑒𝑟𝑦 ↦→ 𝜆𝑃𝜆𝑄(∀𝑥(𝑃(𝑥) → 𝑄(𝑥)))
𝑎 = 𝜆𝑃𝜆𝑄(∃𝑥(𝑃(𝑥) ∧𝑄(𝑥)))

IL Semantic Clauses
If 𝛼 is a constant, J𝛼K𝑀,𝑤,𝑔 = 𝐼(𝛼)(𝑤)
If 𝛼 is a variable, J𝛼K𝑀,𝑤,𝑔 = 𝑔(𝛼)
If 𝛼 is an expression of type ⟨𝑎, 𝑏⟩ and 𝛽 an expression of
type 𝑎, J𝛼(𝛽)K𝑀,𝑤,𝑔 = J𝛼K𝑀,𝑤,𝑔(J𝛽K𝑀,𝑤,𝑔)
If 𝛼 is an expression of type 𝑎 and 𝑧 variable of type 𝑏,
J𝜆𝑧𝛼K𝑀,𝑤,𝑔 is that function ℎ ∈ 𝐷⟨𝑏,𝑎⟩ s.t. for all 𝑑 ∈ 𝐷𝑏 :
ℎ(𝑑) = J𝛼K𝑀,𝑤,𝑔[𝑧/𝑑]

J□𝜙K𝑀,𝑤,𝑔 = 1 iff ∀𝑤′ ∈ 𝑊 : J𝜙K𝑀,𝑤′ ,𝑔 = 1

If 𝛼 is an expression of type 𝑎, then J∧𝛼K𝑀,𝑤,𝑔 is that
function ℎ ∈ 𝐷⟨𝑠,𝑎⟩ such that for all 𝑤′ ∈ 𝑊 : ℎ(𝑤′) =

J𝛼K𝑀,𝑤′ ,𝑔

If 𝛼 is an expression of type ⟨𝑠, 𝑎⟩, then J∨𝛼K𝑀,𝑤,𝑔 =

J𝛼K𝑀,𝑤,𝑔(𝑤)

IL - Ty2 translation
(i) 𝜎(𝑐𝜏) = 𝑐⟨𝑠,𝜏⟩(𝑣)

𝜎(𝑣𝜏) = 𝑣𝜏
(ii) 𝜎(𝛼(𝛽)) = (𝜎(𝛼)(𝜎(𝛽)))

(iii) 𝜎(¬𝜙) = ¬𝜎(𝜙)
(iv) 𝜎(𝜙 ∧ 𝜓) = 𝜎(𝜙) ∧ 𝜎(𝜙)

[likewise for ∨, →, ↔]
(v) 𝜎(∀𝑥(𝜙)) = ∀𝑥(𝜎(𝜙))

[likewise for ∃𝑥(𝜙)]

(vi) 𝜎(𝛼 = 𝛽) = 𝜎(𝛼) =

𝜎(𝛽)
(vii) 𝜎(𝜆𝑥(𝛼)) = 𝜆𝑥(𝜎(𝛼))

(viii) 𝜎(□𝜙) = ∀𝑣(𝜎(𝜙))
(ix) 𝜎(♢𝜙) = ∃𝑣(𝜎(𝜙))
(x) 𝜎(∧𝛼) = 𝜆𝑣(𝜎(𝛼))

(xi) 𝜎(∨𝛼) = (𝜎(𝛼(𝑣)))

Theorem 6: J𝜎(𝛼)K𝑀2,𝑔[𝑣/𝑤] = J𝛼K𝑀,𝑤,𝑔

Plurals
The language

1. The standard first order operations ¬,∧,∨, ∃ and
abstraction 𝜆.

2. Individual constants and individual variables.

3. Two term creating operations: + for term conjunc-
tion and 𝜎 for definites.

4. A special relational constant ≤.

5. A set P of one place predicates. This set is sorted
into three different sets:

(a) IND: the set of individual level predicates

(b) COL: the set of collective predicates

(c) MIX: the set of mixed predicates

6. A special predicate 𝐴𝑇 ∈ 𝐼𝑁𝐷

7. Three predicate operations: ↑,↓ ,𝐷

Models

A model for LP is a triple ⟨⟨𝐴,𝑉⟩, ∗, 𝐼⟩ where:

1. ⟨𝐴,∨⟩ is a free i-join (=complete) semilattice gener-
ated by a set of atoms 𝐴𝑇. 𝑃𝐿 = 𝐴\𝐴𝑇

2. ∗ ∉ 𝐴 (undefined element to deal with non-referring
terms)

3. 𝐼 is an interpretation function, such that

• If 𝑐 ∈ 𝐶𝑂𝑁 , then 𝐼(𝑐) ∈ 𝐴 ∪ {∗}

• If 𝑃 ∈ 𝐼𝑁𝐷, then 𝐼(𝑃) ⊆ 𝐴𝑇

• If 𝑃 ∈ 𝐶𝑂𝐿, then 𝐼(𝑃) ⊆ 𝑃𝐿

• If 𝑃 ∈ 𝑀𝐼𝑋, then 𝐼(𝑃) ⊆ 𝐴

Semantics

Terms:

J𝑡1 + 𝑡2K = J𝑡1K ∪ J𝑡2K, if both J𝑡1K, J𝑡2K ∈ 𝐴; * otherwise

J𝜎𝑥.𝑃(𝑥)K = ∨
J𝑃K, if

∨
J𝑃K ∈ J𝑃K; * otherwise

Predicates:

J𝐴𝑇K = 𝐴𝑇

J↑𝑃K = [J𝑃K], the complete sub join-semilattice of 𝐴 gen-
erated by J𝑃K [contains all the individual joins of mem-
bers of J𝑃K]

J↓𝑃K = {𝑑 ∈ 𝐴𝑇 : 𝑑 ∈ J𝑃K}

Formulas:

J𝑃(𝑡)K = 1 iff J𝑡K ∈ J𝑃K, 0 otherwise

J𝑡 ≤ 𝑡′K = 1 iff J𝑡K ≤ J𝑡′K, 0 otherwise

Filter, Ideal, Ultrafilter
Let ⟨𝐴, ≤⟩ be a lattice. A subset 𝑋 ⊆ 𝐴 is:

• upward closed if 𝑎 ∈ 𝑋 and 𝑎 ≤ 𝑏 implies 𝑏 ∈ 𝑋;
• downward closed if 𝑏 ∈ 𝑋 and 𝑎 ≤ 𝑏 implies 𝑎 ∈ 𝑋;
• a filter if it is (1) non-empty, (2) upward closed, (3)

closed under binary meet: if 𝑎, 𝑏 ∈ 𝑋 then 𝑎 ∧ 𝑏 ∈ 𝑋



• an ideal if it is: (1) non-empty, (2) downward closed,
(3) closed under binary join: if 𝑎, 𝑏 ∈ 𝑋 then 𝑎∨𝑏 ∈ 𝑋

Let ⟨𝐴, ≤⟩ be a Boolean lattice. 𝑋 ⊆ 𝐴 is an ultrafilter if:

1. it is a filter;
2. for any 𝑎 ∈ 𝐴, exactly one of 𝑎 and its complement

is in 𝑋

Let ⟨𝐴, ≤⟩ be a Boolean lattice. A (ultra)filter 𝐹 ⊆ 𝐴 is
principal if there exists a set 𝑆, with 𝑆 ≠ ∅ and 𝑆 ⊆ 𝐴, s.t.
𝐹 = {𝐵 : 𝑆 ⊆ 𝐵}. We call 𝑆 the generator of the principal
(ultra)filter 𝐹.

Generalized Quantifiers
ISOM, EXT and CONS

(ISOM) A determiner 𝐷 is topic-neutral iff for any 𝑀,𝑀′

and any 𝐴, 𝐵 ⊆ 𝑀, 𝐴′, 𝐵′ ⊆ 𝑀′:
If (𝑀, 𝐴, 𝐵) � (𝑀′, 𝐴′, 𝐵′), then 𝐷𝑀(𝐴, 𝐵) ↔ 𝐷′

𝑀
(𝐴′, 𝐵′)

(EXT) A determiner 𝐷 satisfies extension iff for any 𝑀
and any 𝐴, 𝐵 ⊆ 𝑀:
If 𝑀 ⊆ 𝑀′, then 𝐷𝑀(𝐴, 𝐵) ⇔ 𝐷𝑀′(𝐴, 𝐵)

(CONS) A determiner 𝐷 is conservative iff for any 𝑀 and
any 𝐴, 𝐵 ⊆ 𝑀 :
𝐷𝑀(𝐴, 𝐵) ⇔ 𝐷𝑀(𝐴, 𝐴 ∩ 𝐵) Monotonicity (fixing a model
𝑀)

MON↑: A determiner 𝐷 is right monotone increasing
iff
𝐵 ⊆ 𝐵′ and 𝐷(𝐴)(𝐵) then 𝐷(𝐴) (𝐵′)

MON↓. A determiner 𝐷 is right monotone decreasing
iff
𝐵 ⊆ 𝐵′ and 𝐷(𝐴) (𝐵′) then 𝐷(𝐴)(𝐵)

↑MON. A determiner 𝐷 is left monotone increasing iff
𝐴 ⊆ 𝐴′ and 𝐷(𝐴)(𝐵) then 𝐷 (𝐴′) (𝐵)

↓MON. A determiner 𝐷 is left monotone decreasing iff
𝐴 ⊆ 𝐴′ and 𝐷 (𝐴′) (𝐵) then 𝐷(𝐴)(𝐵)

Tree of Numbers

(0, 0)

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

. . . . . . . . . . . . . . .

𝐴 − 𝐵 𝐴 ∩ 𝐵

𝐴

Each position in the tree corresponds to
pairs (|𝐴 − 𝐵|, |𝐴 ∩ 𝐵|)

Each row in the tree corresponds to
a different cardinality of 𝐴:
Row0: 𝑐𝑎𝑟𝑑(𝐴) = 0,
Row1: 𝑐𝑎𝑟𝑑(𝐴) = 1, . . .

+ indicates that the quantifier is true in that situation.
− indicates that the quantifier is false in that situation.
Examples:

+
- +

- - +
- - - +

Every

-
- +

- + +
- + + +

Some

Filter, Ideal, Ultrafilter
Let ⟨𝐴, ≤⟩ be a lattice. A subset 𝑋 ⊆ 𝐴 is:

• upward closed if 𝑎 ∈ 𝑋 and 𝑎 ≤ 𝑏 implies 𝑏 ∈ 𝑋;
• downward closed if 𝑏 ∈ 𝑋 and 𝑎 ≤ 𝑏 implies 𝑎 ∈ 𝑋;
• a filter if it is (1) non-empty, (2) upward closed, (3)

closed under binary meet: if 𝑎, 𝑏 ∈ 𝑋 then 𝑎 ∧ 𝑏 ∈ 𝑋

• an ideal if it is: (1) non-empty, (2) downward closed,
(3) closed under binary join: if 𝑎, 𝑏 ∈ 𝑋 then 𝑎∨𝑏 ∈ 𝑋

Let ⟨𝐴, ≤⟩ be a Boolean lattice. 𝑋 ⊆ 𝐴 is an ultrafilter if:

1. it is a filter;
2. for any 𝑎 ∈ 𝐴, exactly one of 𝑎 and its complement

is in 𝑋

Let ⟨𝐴, ≤⟩ be a Boolean lattice. A (ultra)filter 𝐹 ⊆ 𝐴 is
principal if there exists a set 𝑆, with 𝑆 ≠ ∅ and 𝑆 ⊆ 𝐴, s.t.
𝐹 = {𝐵 : 𝑆 ⊆ 𝐵}. We call 𝑆 the generator of the principal
(ultra)filter 𝐹.

Type-Shifting

𝐵𝐸 = 𝜆𝑇⟨⟨𝑒 ,𝑡⟩,𝑡⟩𝜆𝑥𝑒(𝑇(𝜆𝑦𝑒(𝑦 = 𝑥)))
𝑇𝐻𝐸 = 𝜆𝑃⟨𝑒 ,𝑡⟩𝜆𝑄⟨𝑒 ,𝑡⟩(∃𝑥(∀𝑦(𝑃(𝑦) ↔ 𝑦 = 𝑥) ∧𝑄(𝑥)))
𝐴 = 𝜆𝑃⟨𝑒 ,𝑡⟩𝜆𝑄⟨𝑒 ,𝑡⟩(∃𝑥(𝑃(𝑥) ∧𝑄(𝑥)))

lift 𝑒 ↦→ ⟨⟨𝑒 , 𝑡⟩, 𝑡⟩ 𝑗 ↦→ 𝜆𝑃𝑃(𝑗)
lower ⟨⟨𝑒 , 𝑡⟩, 𝑡⟩ ↦→ 𝑒 𝑙𝑜𝑤𝑒𝑟(𝑙𝑖 𝑓 𝑡(𝑗)) = 𝑗

(lower maps a principal ultrafilter to the unique element
in its generator)

ident 𝑒 ↦→ ⟨𝑒 , 𝑡⟩ 𝑗 ↦→ 𝜆𝑥(𝑥 = 𝑗)
iota ⟨𝑒 , 𝑡⟩ ↦→ 𝑒 𝑃 ↦→ 𝜄𝑥𝑃(𝑥)



(iota maps a property to the unique individual satisfying
that property)

Team Semantics

𝑀,𝑇 |= 𝑃(𝑥1 , . . . , 𝑥𝑛) ⇔ ∀𝑗 ∈ 𝑇 :
⟨𝑗(𝑥1), . . . , 𝑗(𝑥𝑛)⟩ ∈
𝐼(𝑃𝑛)

𝑀,𝑇 |= 𝜙 ∧ 𝜓 ⇔ 𝑀,𝑇 |= 𝜙 and 𝑀,𝑇 |= 𝜓

𝑀,𝑇 |= 𝜙 ∨ 𝜓 ⇔ 𝑇 = 𝑇1 ∪𝑇2 for two teams
𝑇1 and 𝑇2 s.t. 𝑀,𝑇1 |= 𝜙
and 𝑀,𝑇2 |= 𝜓

𝑀,𝑇 |= ∀𝑦𝜙 ⇔ 𝑀,𝑇[𝑦] |= 𝜙, where
𝑇[𝑦] = {𝑖[𝑑/𝑦] : 𝑖 ∈
𝑇 and 𝑑 ∈ 𝐷}

𝑀,𝑇 |= ∃strict𝑦𝜙 ⇔ there is a function ℎ :
𝑇 → 𝐷 s.t. 𝑀,𝑇[ℎ/𝑦] |=
𝜙, where 𝑇[ℎ/𝑦] =

{𝑖[ℎ(𝑖)/𝑦] : 𝑖 ∈ 𝑇}
𝑀,𝑇 |= ∃lax𝑦𝜙 ⇔ there is a function 𝑓 :

𝑇 → ℘(𝐷)\{∅} s.t.
𝑀,𝑇[ 𝑓 /𝑦] |= 𝜙, where
𝑇[ 𝑓 /𝑦] = {𝑖[𝑑/𝑦] : 𝑖 ∈
𝑇 and 𝑑 ∈ 𝑓 (𝑖)}

𝑀,𝑇 |= 𝑑𝑒𝑝(®𝑥, 𝑦) ⇔ for all 𝑖 , 𝑗 ∈ 𝑇 : 𝑖(®𝑥) =

𝑗(®𝑥) ⇒ 𝑖(𝑦) = 𝑗(𝑦)
𝑀,𝑇 |= 𝑣𝑎𝑟(®𝑥, 𝑦) ⇔ there is 𝑖 , 𝑗 ∈ 𝑇 : 𝑖(®𝑥) =

𝑗(®𝑥) & 𝑖(𝑦) ≠ 𝑗(𝑦)


