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Literature
Mandatory:

• Gamut 7.2

Further recommended reading:

• Barwise and Cooper. Generalized quantifiers and natural language.
Linguist Philos, 1981.

• Westerståhl. Generalized Quantifiers, SEP.
• Keenan, The semantics of determiners, Handbook of Contemporary

Semantic Theory, Blackwell, 1996.
• Peters & Westerståhl. Quantifiers in Language and Logic, OUP, 2008
• Keenan & Westerståhl. Generalized Quantifiers in Linguistics and

Logic. Handbook of Logic and Language 2nd ed., 2011
• Westerståhl, Generalized quantifiers. The Cambridge Handbook of

Formal Semantics, 2016
• Szymanik. Quantifiers and Cognition, Springer 2016.
• Keenan & Paperno (eds.), Handbook of Quantifiers in Natural

Language, Springer 2017.
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Natural Language Quantifiers
Quantification is quite common in ordinary language:

• All dogs bark.

• Some cats are black.

• Most people enjoy music.

• Exactly two cars were stolen last night.

Barwise & Copper (1981): seminal study on the applications of
GQs to natural language.

Jon Barwise (1942 - 2000) Robin Cooper (1947 - )
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Generalized Quantifiers

The term generalized quantifiers
was introduced by Mostowski (1957)
to study mathematically interesting
quantifiers not definable in terms of
the first-order ∃ or ∀, like finitely
many or most (originally defined as
classes of models closed under iso-
morphisms).

Andrzej
Mostowski

(1913 - 1975)

What do you think motivated Isomorphism Closure?
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Quantifiers as second-order relations
Given a model M , we can treat a generalized quantifier as a
second order relation over subsets of the universe.

ever yM [A,B ] iff AM ⊆ B M

someM [A,B ] iff AM ∩B M ̸=∅

exactl y t woM [A,B ] iff |AM ∩B M |= 2

A B

a b

c

d

e

M

7 / 42



Introduction Semantic Universals Monotonicity The Algebraic Interpretation Polyadic Quantification

Types of Quantifiers

A quantifier Q is of type 〈n1, . . . ,nk〉 if it applies to k formulas and
binds ni variables in the i th formula.

• Terms: John, every cat, . . . 〈1〉
• One place determiners: every, most, . . . 〈1,1〉
• Two place determiners: more ... than ... 〈〈1,1〉,1〉
• Reciprocals:

(1) The boys like each other. 〈1,2〉
• Different and same:

(2) a. Every boy in my class reads a different book. 〈〈1,1〉,2〉
b. Every student answered the same question. 〈〈1,1〉,2〉
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Montague Grammar vs GQT for 〈1〉

How did Montague treated terms?

John 7→λPP ( j )
every man 7→λP∀x(M(x) → P (x))

The syntax of these logical translations
directly reflect their semantic interpreta-
tion.

Richard
Montague

(1930 - 1971)

In GQT, the translation process is trivial and the efforts are
concentrated on the model-theoretic part. Take a model
M = (D, [ ]):

[John] = {X ⊆ D | j ∈ X }

[every man] = {X ⊆ D | [man] ⊆ X }
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Relational vs Functional for Determiners 〈1,1〉
(3) Every man sleeps

Functional:
(every[man])([sleep]) f ∈ [

D(e,t ) →
[
D(e,t ) → {0,1}

]]
Relational:
every (man, sleep) R ⊆ D(e,t ) ×D(e,t )

The two views are equivalent:

Let f ∈ [B → [A → {0,1}]]. Then

R f = {〈a,b〉 | a ∈ A & b ∈ B & ( f (b))(a) = 1}

Let R ⊆ A×B . Then

fR ∈ [B → [A → {0,1}]] is such that for all b ∈ B & a ∈ A :(
fR (b)

)
(a) = 1 iff 〈a,b〉 ∈ R
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Some Examples of type 〈1,1〉

ever y(A,B) = 1 iff A ⊆ B

some(A,B) = 1 iff A∩B ̸=∅

no(A,B) = 1 iff A∩B =∅

most (A,B) = 1 iff |A∩B |> |A−B |
l ess than f i ve(A,B) = 1 iff |A∩B |< 5

al l but t wo(A,B) = 1 iff |A−B |= 2
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Generalized Quantifiers

A monadic quantifier is of type 〈1, . . . ,1〉. It is a relation over
subsets of M .

A polyadic quantifier is of type 〈n1, . . . ,nk〉, where ni > 1 for at
least one i . It is a relation between k relations over M , where
the i ’th relation is n-ary.

Similar definitions can be given for the functional view.
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Logic and Language

Universal cross-linguistic regularities in the domain of
quantifiers?

Relationship between class of natural languages and class of
logically possible languages?

QUESTION 1: Are there constraints on which functions (or
relations) can be denoted by natural language
determiners?

QUESTION 2: Do lexical (=syntactically simple) Dets satisfy
stronger constraints on their possible denotations than
syntactically complex one?

If car d(M) = n, how many determiners can we define? (How
many functions (et , (et , t ))?)
24n

. With just two objects (n = 2), we get 65 536.
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Isomorphism closure (ISOM) - Topic Neutrality
A determiner D is topic-neutral iff for all A,B ⊆ M :

If (M , A,B) ∼= (M ′, A′,B ′), then DM (A,B) ↔ D ′
M (A′,B ′)

A B

A topic-neutral determiner is a determiner which is not sensitive
to the properties of, and the relations between, the elements in
the domain and in the sets which it relates.

Most well-known determiners are topic-neutral, e.g. every.
Possessive determiners like John’s are not. Why? 15 / 42
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Extensionality (EXT)
EXT: A determiner D satisfies extension iff for all
A,B ⊆ M :

if M ⊆ M ′, then DM (A,B) ⇔ DM ′(A,B)

A B

DM (A,B) does not change its meaning if the universe becomes
bigger without affecting the size of A and B . The set M − (A∪B)
is irrelevant.

Generalization: All natural language determiners satisfy
EXT. 16 / 42
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Conservativity (CONS)

CONS: A determiner D is conservative iff for all A,B ⊆ M :

DM (A,B) ⇔ DM (A, A∩B)

A−B A∩B B − A

A B

To verify DM (A,B) it is sufficient to look at the interpretation of
A−B and of A∩B . The set B − A is irrelevant.
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Conservativity Test

Conservativity test: Det N VP ⇔ Det N are N that VP.

(4) a. All men smile. ⇔
b. All men are men that smile.

(5) a. Some men smile. ⇔
b. Some men are men that smile.

(6) a. Most men smile. ⇔
b. Most men are men that smile.
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Conservativity Generalization

Is CONS a weak or a strong condition? How many quantifiers
satisfy CONS?

(Keenan and Stavi 1986):

For |De | = n,∣∣D〈〈e,t〉,〈〈e,t〉t〉〉
∣∣ = 24n

|CON S|= 23n

For |De | = 2,∣∣D〈〈e,t〉,〈〈e,t〉t〉〉
∣∣ = 65536

|CON S|= 512

Generalization: (With at most a few exceptions) Natural
language determiners are conservative.

Can you think of a non-conservative determiner?

Onl yM (A,B) ⇔ B ⊆ A

Only men smile ̸⇔ Only men are men that smile.
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The case of Only

Is only a determiner? What do you think?

Only is not a determiner. Some evidence:

(7) a. Only/*every/*some/*the/*most John cries.
b. John only/*every/*some/*the/*most cries.
c. John sleeps only/*every/*some/*the/*most with his

teddy bear.

Only is a determiner. Some evidence:

(8) All and only boys cry.
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Trees

By EXT, M − (A∪B) is irrelevant.

By CONS, B − A is irrelevant.

By ISOM only the cardinality of A−B and A∩B count.

Determiners satisfying
these three constraints
can be perspicuously
represented by means of
a tree of numbers (van
Benthem 1983, 1984). Johan van Benthem

(1949 - )
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Triangle Representation

(0, 0)

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

. . . . . . . . . . . . . . .

A−B A∩B

A

Pairs (|A−B |, |A∩B |)
Row0: car d(A) = 0,
Row1: car d(A) = 1, . . .

+
- +

- - +
- - - +

Every

-

- +
- + +

- + + +
Some

-

- -

- - +
- - + -
Exactly two
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Monotonicity
Monotonicity is an important and well-known phenomenon in
many contexts.

In general, a function f relative to an ordering ≤1 of the
arguments and an ordering ≤2 of the values is increasing iff
x ≤1 y , then f (x) ≤2 f (y).

For GQs, we take ≤1 to be set-inclusion and ≤2 to be
entailment.

Type 〈1〉 quantifiers:

QM is monotone increasing iff
if X ⊆ Y ⊆ M , then QM (X ) ⇒QM (Y )

QM is monotone decreasing iff
if X ⊆ Y ⊆ M , then QM (Y ) ⇒QM (X )

Ever y man increasing No man decreasing
E xactl y t wo neither
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Monotonicity

For Determiners D of type 〈1,1〉:
MON↑: A determiner D is right monotone increasing iff
B ⊆ B ′ and D(A)(B) then D(A)

(
B ′)

MON↓. A determiner D is right monotone decreasing iff
B ⊆ B ′ and D(A)

(
B ′) then D(A)(B)

↑MON. A determiner D is left monotone increasing iff
A ⊆ A′ and D(A)(B) then D

(
A′) (B)

↓MON. A determiner D is left monotone decreasing iff
A ⊆ A′ and D

(
A′) (B) then D(A)(B)

↓ Ever y ↑ ↑ Some ↑ Most ↑ E xactl y t wo
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Monotonicity & Universals

Barwise & Cooper (1981): The simple determiners of any
natural language express right monotone quantifiers or
conjunctions of monotone quantifiers (e.g, two men := at most
two men AND at least two men.).

It also usually holds that left monotone determiners (increasing
or decreasing) are also right monotone (increasing or
decreasing).
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Monotonicity and Reasoning

Monotonicity patterns could be exploited to model reasoning
patterns in natural language.

If D is increasing and X ⊆ Y , then D(A, X ) entails D(A,Y ).

(9) a. Every boy sings beautifully.
b. Every boy sings.

If D is decreasing and Y ⊆ X , then D(A, X ) entails D(A,Y ).

(10) a. No boy sings.
b. No boy sings beautifully.
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Natural Logic
Most ↑ has arguably a not trivial semantics, but inferences
based on monotonicity patterns are immediate:

(11) a. Most Americans who know a foreign language speak it at
home.

b. ⇝ Most Americans who know a foreign language speak it
at home or at work.

The field of natural logic (Moss 2015 for an overview) examines
different inference patterns based on their computational
complexity and closeness to natural language.

(12) a. More than two-thirds of the students passed the
exam.

b. At least one-third of the students are athletes.
c. ⇝ Some student who is an athlete passed the exam.

(Example from Keenan 2005)

The inference pattern Q(A,B) & Qd(A,C ) ⇒ some(A,B ∩C )
[Qd := ¬Q¬] is valid only for MON ↑ quantifiers.
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Universals & Cognition

Why almost all natural language determiners are closed under
isomorphism, they satisfy EXT and CONS and they are
monotonic?

Barwise & Copper already proposed that these quantifiers are
in a sense simpler to verify.

This led to an influential research
agenda exploring the relationship be-
tween logic, complexity and learnabil-
ity of GQs (e.g., Szymanik 2016 and
related work).

Jakub Szymanik
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Negative Polarity Items
The English adverb ‘ever’ requires a negative environment and
it is thus an example of a Negative Polarity Item (NPI):

(13) Sentential Negation
a. John hasn’t ever been to Paris.
b. #John has ever been to Paris.

(14) ‘No’ vs ‘Some’
a. No student here has ever been to Paris.
b. #Some student here has ever been to Paris.

(15) ‘At most’ vs ‘At least’
a. At most five students here have ever been to Paris.
b. #At least five students here have ever been to Paris.

(16) ‘Every’ vs ‘Some’
a. Every student who has ever been to Paris speaks

French.
b. #Some student who has ever been to Paris speaks

French.
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Ladusaw-Fauconnier Generalization

Klima (1964): NPIs must be licensed by a negative
expression.

Ladusaw-Fauconnier Generalization: Negative polarity items
occur within arguments of monotonic decreasing functions [if
x ≤1 y , then f (y) ≤2 f (x)], but not within arguments of monotonic
increasing functions.

In the case of negation, we take ≤1 and ≤2 as
entailment:

p entails q, then ¬q entails ¬p

(17) Sentential Negation
a. John hasn’t ever been to Paris.
b. #John has ever been to Paris.
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GQs and NPIs

As discussed, GQs can also be described in terms of
monotonicity:

(18) ‘No’↓ vs ‘Some’↑
a. No student here has ever been to Paris.
b. #Some student here has ever been to Paris.

(19) ‘At most↓’ vs ‘At least↑’
a. At most five students here have ever been to Paris.
b. #At least five students here have ever been to Paris.

(20) ‘↓Every’ vs ‘↑Some’
a. Every student who has ever been to Paris speaks

French.
b. #Some student who has ever been to Paris speaks

French.
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Monotonicity

What do you think are the merits and limits of this
analysis?

It showcases the relevance of formal semantics modelling in
natural language.

Not fully explanatory (why monotonicity?)

It requires further amendments for other items (e.g.,
anti-additivity for yet).

It does not explain the occurrence of NPI in questions:

(21) Have you ever been to Paris?
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The Algebraic Interpretation
It is natural to think of GQs as having a Boolean
structure.

Given a domain D, we can think of the denotation of GQs as
sets of properties (i.e., subsets of ℘(D)).

Ali ce(A) = 1 ⇐⇒ a ∈ A
JAli ceK = {X |a ∈ X }

JEver y womanK =
{X |W ⊆ X }

〈℘(D),⊆〉 with D = {a,b,c}
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Example: Ultrafilters

The denotation of Alice is an ultrafilter on the powerset lattice
〈P (D),⊆〉

JAli ceK = {X |a ∈ X }

Filter:
It is non-empty.
It is upward-closed.
It is closed under binary intersection.
Ultrafilter:
For any set B ∈ ℘(D), exactly one of
Ali ce(B) or Ali ce(B) will hold. 〈℘(D),⊆〉 with

D = {a,b,c}
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Polyadic Quantifiers
(22) Most critics reviewed two books. 〈1,1,2〉

Q(A,B ,R) ⇔|A∩{a ∈ A : |B∩Ra |= 2}|> |A−{a ∈ A : |B∩Ra |= 2}|
Ra = {b : Rab}

(22) can be formalized as a quantifier Q(A,B ,R), where A is
the set of critics, B the set of books and R the binary relation
reviewed. The type of the quantifier is thus 〈1,1,2〉.
Q(A,B ,R) can be defined by means of two type 〈1,1〉
quantifiers:

Q(A,B ,R) ⇔most(A, {a : two(B , {b : Rab})})

This operation is called iteration (most · t wo), and can be
generalized as follows:

(Q ·Q ′)[A,B ,R] ⇐⇒ Q
[

A, {a : Q′ [B ,Ra]}
]
,

where Ra = {b : Rab}.
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Frege Boundary

Frege Boundary: All polyadic quantification in natural
language is iterated monadic quantification.

(23) Twenty students attended ten courses.
Cumulative: Each of the 20 students attended at least
one course and each of the 10 courses was attended by
at least one student.

How to capture the cumulative reading of (23)?

With a cumulation operator definable by means of iteration and
the existential quantifier:

Cum
(
Q,Q′) [A,B ,R] ⇐⇒

(Q ·Some)[A,B ,R]∧ (Q′ ·Some)[B , A,R−1]
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Irreducible Polyadic Quantifiers
However, not all natural language quantifiers can be expressed
by means of iteration.

(24) Most people are grateful to firemen who rescue them.

(24) has a reading where the quantifier applies to the pairs
composed of a person and a fireman who rescues that
person.

This reading can be captured by lifting the type of most . This
operation is also known as resumption.

Resk (most )M (R,G) ⇐⇒|R ∩G|> |R −G| 〈k,k〉
Res2(most )M (R,G) ⇐⇒|R ∩G|> |R −G| 〈2,2〉
R(a,b) ⇔ a rescued b G(a,b) ⇔ a is grateful to b

Resumption is not definable from any finite number of monadic
quantifiers (Hella, Väänänen, & Westerståhl 1997).
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Frege Boundary

Similar lifting strategies can be applied to branching quantifiers
and reciprocals (Peters & Westerståhl 2006, ch. 10).

As a result, while the Frege Boundary does probably not hold, it
can still be argued that complex polyadic quantifiers can be
formed from monadic quantifiers by means of dedicated (lifting)
operations.

For a discussion on polyadic quantification and complexity, see
Szymanik (2016, Part III).
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THANK YOU!
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